Ffftdtd5dtft commited on
Commit
0d63e3d
·
verified ·
1 Parent(s): baebf09

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +179 -68
app.py CHANGED
@@ -2,10 +2,18 @@ import os
2
  import shutil
3
  import subprocess
4
  import signal
 
5
  import gradio as gr
6
- from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
 
 
 
 
 
7
  from gradio_huggingfacehub_search import HuggingfaceHubSearch
 
8
  from apscheduler.schedulers.background import BackgroundScheduler
 
9
  from textwrap import dedent
10
 
11
  HF_TOKEN = os.environ.get("HF_TOKEN")
@@ -32,7 +40,7 @@ def generate_importance_matrix(model_path, train_data_path):
32
  try:
33
  process.wait(timeout=5) # grace period
34
  except subprocess.TimeoutExpired:
35
- print("Imatrix proc still didn't term. Forcefully terminating process...")
36
  process.kill()
37
 
38
  os.chdir("..")
@@ -78,7 +86,7 @@ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, s
78
 
79
  print("Sharded model has been uploaded successfully!")
80
 
81
- def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.oauth.OAuthToken | None):
82
  if oauth_token.token is None:
83
  raise ValueError("You must be logged in to use GGUF-my-repo")
84
  model_name = model_id.split('/')[-1]
@@ -87,8 +95,11 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
87
  try:
88
  api = HfApi(token=oauth_token.token)
89
 
90
- dl_pattern = ["*.md", "*.json", "*.model"]
91
- model_types = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel"]
 
 
 
92
 
93
  pattern = (
94
  "*.safetensors"
@@ -103,7 +114,6 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
103
  )
104
 
105
  dl_pattern += pattern
106
- dl_pattern += model_types
107
 
108
  api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
109
  print("Model downloaded successfully!")
@@ -125,7 +135,7 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
125
  if train_data_file:
126
  train_data_path = train_data_file.name
127
  else:
128
- train_data_path = "groups_merged.txt" # fallback calibration dataset
129
 
130
  print(f"Training data file path: {train_data_path}")
131
 
@@ -135,13 +145,16 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
135
  generate_importance_matrix(fp16, train_data_path)
136
  else:
137
  print("Not using imatrix quantization.")
 
138
  username = whoami(oauth_token.token)["name"]
139
  quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
140
  quantized_gguf_path = quantized_gguf_name
 
141
  if use_imatrix:
142
  quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
143
  else:
144
  quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
 
145
  result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
146
  if result.returncode != 0:
147
  raise Exception(f"Error quantizing: {result.stderr}")
@@ -196,77 +209,175 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
196
  ```
197
  cd llama.cpp && LLAMA_CURL=1 make
198
  ```
199
- Step 3: Fetch model weights from HF using curl command and run the models directly!
200
  ```
201
- curl -L https://huggingface.co/{new_repo_id}/resolve/main/{quantized_gguf_name} -o ./models/{quantized_gguf_name}
202
- ./llama -m ./models/{quantized_gguf_name} -p "Hello, world!"
 
 
 
203
  ```
204
-
205
- ## Additional Notes:
206
- To gain higher performance, ensure that you have aligned on llama.cpp's threading tips by having your CPU fully utilized and setting threads dynamically using `OMP_NUM_THREADS`.
207
  """
208
  )
209
- card.push_to_hub(repo_id=new_repo_id, token=oauth_token.token)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
  api.upload_file(
211
- path_or_fileobj=quantized_gguf_path,
212
- path_in_repo=quantized_gguf_name,
213
  repo_id=new_repo_id,
214
  )
215
- if split_model:
216
- split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors=split_max_tensors, split_max_size=split_max_size)
217
- else:
218
- print("Model split skipped by user.")
219
 
220
- print("Model has been uploaded successfully!")
 
 
 
221
  except Exception as e:
222
- print(f"An error occurred: {str(e)}")
223
- return False, str(e)
224
  finally:
225
- if os.path.exists(fp16):
226
- os.remove(fp16)
227
- if os.path.exists(quantized_gguf_path):
228
- os.remove(quantized_gguf_path)
229
- shutil.rmtree(model_name)
230
- print(f"Removed temporary files for model {model_name}")
231
-
232
- return True, None
233
-
234
- def app_interface():
235
- with gr.Blocks() as demo:
236
- gr.Markdown("## GGUF Model Processing")
237
-
238
- with gr.Row():
239
- with gr.Column():
240
- repo_id = gr.Textbox(label="HuggingFace Repo ID")
241
- model_id = gr.Textbox(label="Model ID")
242
- q_method = gr.Dropdown(["q4_0", "q4_1", "q5_0", "q5_1", "q8_0"], label="Quantization Method")
243
- imatrix_q_method = gr.Dropdown(["q4_0", "q4_1", "q5_0", "q5_1", "q8_0"], label="Imatrix Quantization Method")
244
- use_imatrix = gr.Checkbox(label="Use Importance Matrix")
245
- private_repo = gr.Checkbox(label="Private Repo")
246
- train_data_file = gr.File(label="Training Data File (Optional)")
247
- split_model = gr.Checkbox(label="Split Model")
248
- split_max_tensors = gr.Number(label="Max Tensors per Shard", value=256)
249
- split_max_size = gr.Number(label="Max Shard Size (MB)", value=None)
250
- with gr.Column():
251
- oauth_token = gr.oauth.HuggingFace(
252
- "Gradio OAuth Authentication",
253
- token=HF_TOKEN,
254
- )
255
-
256
- process_btn = gr.Button("Process Model")
257
- process_btn.click(
258
- process_model,
259
- [model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token],
260
- outputs=["status_text"]
261
- )
262
-
263
- return demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
 
265
- if __name__ == "__main__":
266
- scheduler = BackgroundScheduler(daemon=True)
267
- scheduler.start()
268
 
269
- demo = app_interface()
270
- demo.launch()
 
271
 
272
- signal.signal(signal.SIGINT, signal.SIG_DFL)
 
 
2
  import shutil
3
  import subprocess
4
  import signal
5
+ os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
6
  import gradio as gr
7
+
8
+ from huggingface_hub import create_repo, HfApi
9
+ from huggingface_hub import snapshot_download
10
+ from huggingface_hub import whoami
11
+ from huggingface_hub import ModelCard
12
+
13
  from gradio_huggingfacehub_search import HuggingfaceHubSearch
14
+
15
  from apscheduler.schedulers.background import BackgroundScheduler
16
+
17
  from textwrap import dedent
18
 
19
  HF_TOKEN = os.environ.get("HF_TOKEN")
 
40
  try:
41
  process.wait(timeout=5) # grace period
42
  except subprocess.TimeoutExpired:
43
+ print("Imatrix proc still didn't term. Forecfully terming process...")
44
  process.kill()
45
 
46
  os.chdir("..")
 
86
 
87
  print("Sharded model has been uploaded successfully!")
88
 
89
+ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
90
  if oauth_token.token is None:
91
  raise ValueError("You must be logged in to use GGUF-my-repo")
92
  model_name = model_id.split('/')[-1]
 
95
  try:
96
  api = HfApi(token=oauth_token.token)
97
 
98
+ dl_pattern = [
99
+ "*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite",
100
+ "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel",
101
+ "*.md", "*.json", "*.model"
102
+ ]
103
 
104
  pattern = (
105
  "*.safetensors"
 
114
  )
115
 
116
  dl_pattern += pattern
 
117
 
118
  api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
119
  print("Model downloaded successfully!")
 
135
  if train_data_file:
136
  train_data_path = train_data_file.name
137
  else:
138
+ train_data_path = "groups_merged.txt" # fallback calibration dataset
139
 
140
  print(f"Training data file path: {train_data_path}")
141
 
 
145
  generate_importance_matrix(fp16, train_data_path)
146
  else:
147
  print("Not using imatrix quantization.")
148
+
149
  username = whoami(oauth_token.token)["name"]
150
  quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
151
  quantized_gguf_path = quantized_gguf_name
152
+
153
  if use_imatrix:
154
  quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
155
  else:
156
  quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
157
+
158
  result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
159
  if result.returncode != 0:
160
  raise Exception(f"Error quantizing: {result.stderr}")
 
209
  ```
210
  cd llama.cpp && LLAMA_CURL=1 make
211
  ```
212
+ Step 3: Run inference through the main binary.
213
  ```
214
+ ./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
215
+ ```
216
+ or
217
+ ```
218
+ ./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
219
  ```
 
 
 
220
  """
221
  )
222
+ card.save(f"README.md")
223
+
224
+ if split_model:
225
+ split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
226
+ else:
227
+ try:
228
+ print(f"Uploading quantized model: {quantized_gguf_path}")
229
+ api.upload_file(
230
+ path_or_fileobj=quantized_gguf_path,
231
+ path_in_repo=quantized_gguf_name,
232
+ repo_id=new_repo_id,
233
+ )
234
+ except Exception as e:
235
+ raise Exception(f"Error uploading quantized model: {e}")
236
+
237
+ imatrix_path = "llama.cpp/imatrix.dat"
238
+ if os.path.isfile(imatrix_path):
239
+ try:
240
+ print(f"Uploading imatrix.dat: {imatrix_path}")
241
+ api.upload_file(
242
+ path_or_fileobj=imatrix_path,
243
+ path_in_repo="imatrix.dat",
244
+ repo_id=new_repo_id,
245
+ )
246
+ except Exception as e:
247
+ raise Exception(f"Error uploading imatrix.dat: {e}")
248
+
249
  api.upload_file(
250
+ path_or_fileobj=f"README.md",
251
+ path_in_repo=f"README.md",
252
  repo_id=new_repo_id,
253
  )
254
+ print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
 
 
 
255
 
256
+ return (
257
+ f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
258
+ "llama.png",
259
+ )
260
  except Exception as e:
261
+ return (f"Error: {e}", "error.png")
 
262
  finally:
263
+ shutil.rmtree(model_name, ignore_errors=True)
264
+ print("Folder cleaned up successfully!")
265
+
266
+ css="""/* Custom CSS to allow scrolling */
267
+ .gradio-container {overflow-y: auto;}
268
+ """
269
+ # Create Gradio interface
270
+ with gr.Blocks(css=css) as demo:
271
+ gr.Markdown("You must be logged in to use GGUF-my-repo.")
272
+ gr.LoginButton(min_width=250)
273
+
274
+ model_id = HuggingfaceHubSearch(
275
+ label="Hub Model ID",
276
+ placeholder="Search for model id on Huggingface",
277
+ search_type="model",
278
+ )
279
+
280
+ q_method = gr.Dropdown(
281
+ ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
282
+ label="Quantization Method",
283
+ info="GGML quantization type",
284
+ value="Q4_K_M",
285
+ filterable=False,
286
+ visible=True
287
+ )
288
+
289
+ imatrix_q_method = gr.Dropdown(
290
+ ["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
291
+ label="Imatrix Quantization Method",
292
+ info="GGML imatrix quants type",
293
+ value="IQ4_NL",
294
+ filterable=False,
295
+ visible=False
296
+ )
297
+
298
+ use_imatrix = gr.Checkbox(
299
+ value=False,
300
+ label="Use Imatrix Quantization",
301
+ info="Use importance matrix for quantization."
302
+ )
303
+
304
+ private_repo = gr.Checkbox(
305
+ value=False,
306
+ label="Private Repo",
307
+ info="Create a private repo under your username."
308
+ )
309
+
310
+ train_data_file = gr.File(
311
+ label="Training Data File",
312
+ file_types=["txt"],
313
+ visible=False
314
+ )
315
+
316
+ split_model = gr.Checkbox(
317
+ value=False,
318
+ label="Split Model",
319
+ info="Shard the model using gguf-split."
320
+ )
321
+
322
+ split_max_tensors = gr.Number(
323
+ value=256,
324
+ label="Max Tensors per File",
325
+ info="Maximum number of tensors per file when splitting model.",
326
+ visible=False
327
+ )
328
+
329
+ split_max_size = gr.Textbox(
330
+ label="Max File Size",
331
+ info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
332
+ visible=False
333
+ )
334
+
335
+ def update_visibility(use_imatrix):
336
+ return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
337
+
338
+ use_imatrix.change(
339
+ fn=update_visibility,
340
+ inputs=use_imatrix,
341
+ outputs=[q_method, imatrix_q_method, train_data_file]
342
+ )
343
+
344
+ iface = gr.Interface(
345
+ fn=process_model,
346
+ inputs=[
347
+ model_id,
348
+ q_method,
349
+ use_imatrix,
350
+ imatrix_q_method,
351
+ private_repo,
352
+ train_data_file,
353
+ split_model,
354
+ split_max_tensors,
355
+ split_max_size,
356
+ ],
357
+ outputs=[
358
+ gr.Markdown(label="output"),
359
+ gr.Image(show_label=False),
360
+ ],
361
+ title="Create your own GGUF Quants, blazingly fast ⚡!",
362
+ description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
363
+ api_name=False
364
+ )
365
+
366
+ def update_split_visibility(split_model):
367
+ return gr.update(visible=split_model), gr.update(visible=split_model)
368
+
369
+ split_model.change(
370
+ fn=update_split_visibility,
371
+ inputs=split_model,
372
+ outputs=[split_max_tensors, split_max_size]
373
+ )
374
 
375
+ def restart_space():
376
+ HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
 
377
 
378
+ scheduler = BackgroundScheduler()
379
+ scheduler.add_job(restart_space, "interval", seconds=21600)
380
+ scheduler.start()
381
 
382
+ # Launch the interface
383
+ demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)