Spaces:
Runtime error
Runtime error
import re | |
import gradio as gr | |
from PIL import Image, ImageFont, ImageDraw, ImageFilter, ImageOps | |
from io import BytesIO | |
import base64 | |
import re | |
def change_image_editor_mode(choice, cropped_image, masked_image, resize_mode, width, height): | |
if choice == "Mask": | |
update_image_result = update_image_mask(cropped_image, resize_mode, width, height) | |
return [gr.update(visible=False), update_image_result, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)] | |
update_image_result = update_image_mask(masked_image["image"] if masked_image is not None else None, resize_mode, width, height) | |
return [update_image_result, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)] | |
def update_image_mask(cropped_image, resize_mode, width, height): | |
resized_cropped_image = resize_image(resize_mode, cropped_image, width, height) if cropped_image else None | |
return gr.update(value=resized_cropped_image, visible=True) | |
def toggle_options_gfpgan(selection): | |
if 0 in selection: | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def toggle_options_upscalers(selection): | |
if 1 in selection: | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def toggle_options_realesrgan(selection): | |
if selection == 0 or selection == 1 or selection == 3: | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def toggle_options_gobig(selection): | |
if selection == 1: | |
#print(selection) | |
return gr.update(visible=True) | |
if selection == 3: | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def toggle_options_ldsr(selection): | |
if selection == 2 or selection == 3: | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def increment_down(value): | |
return value - 1 | |
def increment_up(value): | |
return value + 1 | |
def copy_img_to_lab(img): | |
try: | |
image_data = re.sub('^data:image/.+;base64,', '', img) | |
processed_image = Image.open(BytesIO(base64.b64decode(image_data))) | |
tab_update = gr.update(selected='imgproc_tab') | |
img_update = gr.update(value=processed_image) | |
return processed_image, tab_update, | |
except IndexError: | |
return [None, None] | |
def copy_img_params_to_lab(params): | |
try: | |
prompt = params[0][0].replace('\n', ' ').replace('\r', '') | |
seed = int(params[1][1]) | |
steps = int(params[7][1]) | |
cfg_scale = float(params[9][1]) | |
sampler = params[11][1] | |
return prompt,seed,steps,cfg_scale,sampler | |
except IndexError: | |
return [None, None] | |
def copy_img_to_input(img): | |
try: | |
image_data = re.sub('^data:image/.+;base64,', '', img) | |
processed_image = Image.open(BytesIO(base64.b64decode(image_data))) | |
tab_update = gr.update(selected='img2img_tab') | |
img_update = gr.update(value=processed_image) | |
return processed_image, processed_image , tab_update | |
except IndexError: | |
return [None, None] | |
def copy_img_to_edit(img): | |
try: | |
image_data = re.sub('^data:image/.+;base64,', '', img) | |
processed_image = Image.open(BytesIO(base64.b64decode(image_data))) | |
tab_update = gr.update(selected='img2img_tab') | |
img_update = gr.update(value=processed_image) | |
mode_update = gr.update(value='Crop') | |
return processed_image, tab_update, mode_update | |
except IndexError: | |
return [None, None] | |
def copy_img_to_mask(img): | |
try: | |
image_data = re.sub('^data:image/.+;base64,', '', img) | |
processed_image = Image.open(BytesIO(base64.b64decode(image_data))) | |
tab_update = gr.update(selected='img2img_tab') | |
img_update = gr.update(value=processed_image) | |
mode_update = gr.update(value='Mask') | |
return processed_image, tab_update, mode_update | |
except IndexError: | |
return [None, None] | |
def copy_img_to_upscale_esrgan(img): | |
tabs_update = gr.update(selected='realesrgan_tab') | |
image_data = re.sub('^data:image/.+;base64,', '', img) | |
processed_image = Image.open(BytesIO(base64.b64decode(image_data))) | |
return processed_image, tabs_update | |
help_text = """ | |
## Mask/Crop | |
* Masking is not inpainting. You will probably get better results manually masking your images in photoshop instead. | |
* Built-in masking/cropping is very temperamental. | |
* It may take some time for the image to show when switching from Crop to Mask. | |
* If the image doesn't appear after switching to Mask, switch back to Crop and then back again to Mask | |
* If the mask appears distorted (the brush is weirdly shaped instead of round), switch back to Crop and then back again to Mask. | |
## Advanced Editor | |
* Click πΎ Save to send your editor changes to the img2img workflow | |
* Click β Clear to discard your editor changes | |
If anything breaks, try switching modes again, switch tabs, clear the image, or reload. | |
""" | |
def resize_image(resize_mode, im, width, height): | |
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) | |
if resize_mode == 0: | |
res = im.resize((width, height), resample=LANCZOS) | |
elif resize_mode == 1: | |
ratio = width / height | |
src_ratio = im.width / im.height | |
src_w = width if ratio > src_ratio else im.width * height // im.height | |
src_h = height if ratio <= src_ratio else im.height * width // im.width | |
resized = im.resize((src_w, src_h), resample=LANCZOS) | |
res = Image.new("RGBA", (width, height)) | |
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) | |
else: | |
ratio = width / height | |
src_ratio = im.width / im.height | |
src_w = width if ratio < src_ratio else im.width * height // im.height | |
src_h = height if ratio >= src_ratio else im.height * width // im.width | |
resized = im.resize((src_w, src_h), resample=LANCZOS) | |
res = Image.new("RGBA", (width, height)) | |
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) | |
if ratio < src_ratio: | |
fill_height = height // 2 - src_h // 2 | |
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) | |
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) | |
elif ratio > src_ratio: | |
fill_width = width // 2 - src_w // 2 | |
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) | |
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) | |
return res | |
def update_dimensions_info(width, height): | |
pixel_count_formated = "{:,.0f}".format(width * height) | |
return f"Aspect ratio: {round(width / height, 5)}\nTotal pixel count: {pixel_count_formated}" | |
def get_png_nfo( image: Image ): | |
info_text = "" | |
visible = bool(image and any(image.info)) | |
if visible: | |
for key,value in image.info.items(): | |
info_text += f"{key}: {value}\n" | |
info_text = info_text.rstrip('\n') | |
return gr.Textbox.update(value=info_text, visible=visible) | |
def load_settings(*values): | |
new_settings, key_names, checkboxgroup_info = values[-3:] | |
values = list(values[:-3]) | |
if new_settings: | |
if type(new_settings) is str: | |
if os.path.exists(new_settings): | |
with open(new_settings, "r", encoding="utf8") as f: | |
new_settings = yaml.safe_load(f) | |
elif new_settings.startswith("file://") and os.path.exists(new_settings[7:]): | |
with open(new_settings[7:], "r", encoding="utf8") as f: | |
new_settings = yaml.safe_load(f) | |
else: | |
new_settings = yaml.safe_load(new_settings) | |
if type(new_settings) is not dict: | |
new_settings = {"prompt": new_settings} | |
if "txt2img" in new_settings: | |
new_settings = new_settings["txt2img"] | |
target = new_settings.pop("target", "txt2img") | |
if target != "txt2img": | |
print(f"Warning: applying settings to txt2img even though {target} is specified as target.", file=sys.stderr) | |
skipped_settings = {} | |
for key in new_settings.keys(): | |
if key in key_names: | |
values[key_names.index(key)] = new_settings[key] | |
else: | |
skipped_settings[key] = new_settings[key] | |
if skipped_settings: | |
print(f"Settings could not be applied: {skipped_settings}", file=sys.stderr) | |
# Convert lists of checkbox indices to lists of checkbox labels: | |
for (cbg_index, cbg_choices) in checkboxgroup_info: | |
values[cbg_index] = [cbg_choices[i] for i in values[cbg_index]] | |
return values | |