Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torchvision.transforms as transforms
|
4 |
-
from PIL import Image
|
5 |
-
from torchvision import models
|
6 |
-
import gradio as gr
|
7 |
-
|
8 |
-
# Define transformations (must be the same as those used during training)
|
9 |
-
transform = transforms.Compose([
|
10 |
-
transforms.Resize((224, 224)),
|
11 |
-
transforms.ToTensor(),
|
12 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
13 |
-
])
|
14 |
-
|
15 |
-
# Load the model architecture and weights
|
16 |
-
model = models.resnet50(weights=None) # Initialize model without pretrained weights
|
17 |
-
model.fc = nn.Linear(model.fc.in_features, 4) # Adjust final layer for 4 classes
|
18 |
-
|
19 |
-
# Load the state dictionary with map_location for CPU
|
20 |
-
model.load_state_dict(torch.load("alzheimer_model_resnet50.pth", map_location=torch.device('cpu')))
|
21 |
-
model.eval() # Set model to evaluation mode
|
22 |
-
|
23 |
-
# Define class labels (must match the dataset used during training)
|
24 |
-
class_labels = ["Mild_Demented 0", "Moderate_Demented 1", "Non_Demented 2", "Very_Mild_Demented 3"] # Replace with your class names
|
25 |
-
|
26 |
-
# Define the prediction function
|
27 |
-
def predict(image):
|
28 |
-
image = Image.open(image).convert("RGB")
|
29 |
-
image = transform(image).unsqueeze(0) # Add batch dimension
|
30 |
-
|
31 |
-
with torch.no_grad():
|
32 |
-
outputs = model(image)
|
33 |
-
_, predicted = torch.max(outputs.data, 1)
|
34 |
-
label = class_labels[predicted.item()]
|
35 |
-
return label
|
36 |
-
|
37 |
-
# Create a Gradio interface
|
38 |
-
iface = gr.Interface(fn=predict, inputs="image", outputs="text", title="Alzheimer MRI Classification")
|
39 |
-
|
40 |
-
if __name__ == "__main__":
|
41 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|