Fawazzx commited on
Commit
b1a2603
·
verified ·
1 Parent(s): 9ec92cf

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -41
app.py DELETED
@@ -1,41 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torchvision.transforms as transforms
4
- from PIL import Image
5
- from torchvision import models
6
- import gradio as gr
7
-
8
- # Define transformations (must be the same as those used during training)
9
- transform = transforms.Compose([
10
- transforms.Resize((224, 224)),
11
- transforms.ToTensor(),
12
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
13
- ])
14
-
15
- # Load the model architecture and weights
16
- model = models.resnet50(weights=None) # Initialize model without pretrained weights
17
- model.fc = nn.Linear(model.fc.in_features, 4) # Adjust final layer for 4 classes
18
-
19
- # Load the state dictionary with map_location for CPU
20
- model.load_state_dict(torch.load("alzheimer_model_resnet50.pth", map_location=torch.device('cpu')))
21
- model.eval() # Set model to evaluation mode
22
-
23
- # Define class labels (must match the dataset used during training)
24
- class_labels = ["Mild_Demented 0", "Moderate_Demented 1", "Non_Demented 2", "Very_Mild_Demented 3"] # Replace with your class names
25
-
26
- # Define the prediction function
27
- def predict(image):
28
- image = Image.open(image).convert("RGB")
29
- image = transform(image).unsqueeze(0) # Add batch dimension
30
-
31
- with torch.no_grad():
32
- outputs = model(image)
33
- _, predicted = torch.max(outputs.data, 1)
34
- label = class_labels[predicted.item()]
35
- return label
36
-
37
- # Create a Gradio interface
38
- iface = gr.Interface(fn=predict, inputs="image", outputs="text", title="Alzheimer MRI Classification")
39
-
40
- if __name__ == "__main__":
41
- iface.launch()