UWROV_Deepsea_Detector / inference.py
kbarnard's picture
remove unused imports
5a88aec unverified
raw
history blame
1.91 kB
import glob
import numpy as np
import torch
import yolov5
from typing import Union, List, Optional
# -----------------------------------------------------------------------------
# Configs
# -----------------------------------------------------------------------------
model_path = "models/deepsea-detector.pt"
# -----------------------------------------------------------------------------
# YOLOv5 class
# -----------------------------------------------------------------------------
class YOLO:
"""Wrapper class for loading and running YOLO model"""
def __init__(self, model_path: str, device: Optional[str] = None):
# load model
self.model = yolov5.load(model_path, device=device)
def __call__(
self,
img: Union[str, np.ndarray],
conf_threshold: float = 0.25,
iou_threshold: float = 0.45,
image_size: int = 720,
classes: Optional[List[int]] = None) -> torch.Tensor:
self.model.conf = conf_threshold
self.model.iou = iou_threshold
if classes is not None:
self.model.classes = classes
# pylint: disable=not-callable
detections = self.model(img, size=image_size)
return detections
def run_inference(image_path):
"""Helper function to execute the inference."""
predictions = model(image_path)
return predictions
# -----------------------------------------------------------------------------
# Model Creation
# -----------------------------------------------------------------------------
model = YOLO(model_path, device='cpu')
if __name__ == "__main__":
# For demo purposes: run through a couple of test
# images and then output the predictions in a folder.
test_images = glob.glob("images/*.png")
for test_image in test_images:
predictions = run_inference(test_image)
print("Done.")