File size: 1,457 Bytes
6300104
155e5dc
6300104
155e5dc
6300104
 
155e5dc
6300104
155e5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd9a9d
155e5dc
4c9b3eb
0dd9a9d
155e5dc
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from inference import *
import gradio as gr
import glob

def gradio_app(image_path):
    """Helper function to run inference on provided image"""

    predictions, out_pil = run_inference(image_path)

    return out_pil


# -----------------------------------------------------------------------------
# GRADIO APP
# -----------------------------------------------------------------------------

title = "MBARI Monterey Bay Benthic Supercategory"
description = "Gradio demo for MBARI Monterey Bay Benthic Supercategory: This " \
              "is a RetinaNet model fine-tuned from the Detectron2 object " \
              "detection platform's ResNet backbone to identify 20 benthic " \
              "supercategories drawn from MBARI's remotely operated vehicle " \
              "image data collected in Monterey Bay off the coast of Central " \
              "California. The data is drawn from FathomNet and consists of " \
              "32779 images that contain a total of 80683 localizations. The " \
              "model was trained on an 85/15 train/validation split at the " \
              "image level. DOI: 10.5281/zenodo.5571043. "

examples = glob.glob("images/*.png")

gr.Interface(run_inference,
             inputs=[gr.inputs.Image(type="filepath")],
             outputs=gr.outputs.Image(type="pil"),
             enable_queue=True,
             title=title,
             description=description,
             examples=examples).launch()