Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
from diffusers import StableDiffusionPipeline, DiffusionPipeline | |
from huggingface_hub import HfApi | |
# Set up Hugging Face API | |
api = HfApi() | |
# Define a function to load a language model | |
def load_language_model(model_name): | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
return model, tokenizer | |
# Define a function to generate text with a language model | |
def generate_text(model, tokenizer, prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model(**inputs) | |
return tokenizer.decode(outputs.logits[0], skip_special_tokens=True) | |
# Define a function to generate an image with Stable Diffusion | |
def generate_image(prompt, model_name): | |
pipe = StableDiffusionPipeline.from_pretrained(model_name) | |
image = pipe(prompt, num_inference_steps=50).images[0] | |
return image | |
# Define a function to generate video or music with other diffusion models | |
def generate_media(prompt, model_name, media_type): | |
pipe = DiffusionPipeline.from_pretrained(model_name) | |
if media_type == "video": | |
output = pipe(prompt, num_inference_steps=50).videos[0] | |
elif media_type == "music": | |
output = pipe(prompt, num_inference_steps=50).audios[0] | |
return output | |
# Create a Gradio interface | |
with gr.Blocks() as demo: | |
with gr.Tab("Chat"): | |
with gr.Row(): | |
language_model_input = gr.Textbox(label="Language Model") | |
query_button = gr.Button("Query HuggingFace Hub") | |
chat_input = gr.Textbox(label="Chat Input") | |
chat_output = gr.Textbox(label="Chat Output") | |
generate_button = gr.Button("Generate Text") | |
with gr.Tab("Image Generation"): | |
image_input = gr.Textbox(label="Image Prompt") | |
image_model_input = gr.Textbox(label="Image Model") | |
generate_image_button = gr.Button("Generate Image") | |
image_output = gr.Image(label="Generated Image") | |
with gr.Tab("Media Generation"): | |
media_input = gr.Textbox(label="Media Prompt") | |
media_model_input = gr.Textbox(label="Media Model") | |
media_type_input = gr.Radio(label="Media Type", choices=["video", "music"]) | |
generate_media_button = gr.Button("Generate Media") | |
media_output = gr.Video(label="Generated Media") if media_type_input == "video" else gr.Audio(label="Generated Media") | |
# Query Hugging Face Hub for language models | |
query_button.click(fn=lambda x: [model.modelId for model in api.list_models(filter=x)], inputs=language_model_input, outputs=language_model_input) | |
# Generate text with a language model | |
generate_button.click(fn=generate_text, inputs=[language_model_input, chat_input], outputs=chat_output) | |
# Generate an image with Stable Diffusion | |
generate_image_button.click(fn=generate_image, inputs=[image_input, image_model_input], outputs=image_output) | |
# Generate video or music with other diffusion models | |
generate_media_button.click(fn=generate_media, inputs=[media_input, media_model_input, media_type_input], outputs=media_output) | |
demo.launch() |