Spaces:
Runtime error
Runtime error
File size: 10,629 Bytes
f25846c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from flask import Flask, render_template, request, send_file, redirect
import json
import requests
from urllib.request import urlopen
from bs4 import BeautifulSoup
import re
import joblib
from nltk.sentiment import SentimentIntensityAnalyzer
import matplotlib.pyplot as plt
from matplotlib import font_manager
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
plt.switch_backend('Agg')
import numpy as np
from io import BytesIO
import base64
from dotenv import load_dotenv
import os
import threading
import nltk
nltk.download('vader_lexicon')
def load_classifier_and_vectorizer():
global classifier, vectorizer
classifier = joblib.load('./data/sentiment_classifier.pkl')
vectorizer = joblib.load('./data/sentiment_vectorizer.pkl')
# Start loading in a separate thread
loading_thread = threading.Thread(target=load_classifier_and_vectorizer)
loading_thread.start()
app = Flask(__name__)
load_dotenv()
# Function to get Google search links
def search_links(query):
base_url = "https://www.googleapis.com/customsearch/v1"
api_key = os.environ['api_key']
cx = os.environ['cx']
params = {
'q': query,
'key': api_key,
'cx': cx
}
Err = ""
response = requests.get(base_url, params=params)
if response.status_code == 429 or response.status_code == 403:
Err = "Daily API limit reached"
print("API limit reached.")
return []
results = response.json().get('items', [])
# Extract title and link from the results and create a list of dictionaries
links_with_titles = [[{item.get('title', ''): item.get('link', '')} for item in results], Err]
return links_with_titles
# Function to fetch reviews
def get_reviews(movie_url, review_type):
page = urlopen(movie_url)
html_bytes = page.read()
html = html_bytes.decode("utf-8")
emsId = re.search(r'"emsId":\s*"([^"]+)"', html, re.IGNORECASE).group(1)
title = re.search(r'"titleName":\s*"([^"]+)"', html, re.IGNORECASE).group(1)
title_type = re.search(r'"titleType":\s*"([^"]+)"', html, re.IGNORECASE).group(1)
vanity = re.search(r'"vanity":\s*"([^"]+)"', html, re.IGNORECASE).group(1)
s_no = ""
if title_type == "Tv":
s_no = re.search(r'"tvSeason":\s*"([^"]+)"', html, re.IGNORECASE).group(1)
poster_page_url = f'https://www.rottentomatoes.com/{"tv" if title_type == "Tv" else "m"}/{vanity}/{f"{s_no}/" if s_no else ""}reviews'
poster_page = urlopen(poster_page_url)
soup = BeautifulSoup(poster_page, 'html.parser')
poster_link = soup.find('img', {'data-qa': 'sidebar-poster-img'})
if poster_link:
poster_link = poster_link.get('src')
else:
poster_link = '/data/favicon.ico'
hasNextPage = True
reviews = []
after = ""
while hasNextPage and len(reviews) < 100:
url = f'https://www.rottentomatoes.com/napi/{"season" if title_type == "Tv" else "movie"}/{emsId}/reviews/{review_type}?after={after}'
response = urlopen(url).read().decode('utf-8')
response_object = json.loads(response)
responseArray = response_object['reviews']
for review in responseArray:
reviews.append(review['quote'])
hasNextPage = response_object['pageInfo']['hasNextPage']
if hasNextPage:
after = response_object['pageInfo']['endCursor']
global show_info
show_info = [title, poster_link]
return reviews
# Function to clean text
def clean(input_string):
cleaned_string = re.sub(r'\s+', ' ', input_string)
return cleaned_string.strip()
def analyze_sentiment(reviews):
loading_thread.join()
# Clean and analyze reviews
cleaned_reviews = [clean(phrase) for phrase in reviews]
new_vector = vectorizer.transform(cleaned_reviews)
predictions = classifier.predict(new_vector)
# Return predictions
return predictions
# Function to get polarity scores using NLTK
def get_polarity_scores(reviews):
cleaned_reviews = [clean(phrase) for phrase in reviews]
sia = SentimentIntensityAnalyzer()
scores_list = []
for entry in reviews:
scores = sia.polarity_scores(entry)
scores_list.append(scores)
return scores_list
#Load Font
custom_font_path = 'data/HPSimplified.ttf'
font_manager.fontManager.addfont(custom_font_path)
# Function to plot a bar chart
def plot_bar(data, title):
# Extracting values for each sentiment
neg_values = [entry['neg'] for entry in data]
neu_values = [entry['neu'] for entry in data]
pos_values = [entry['pos'] for entry in data]
compound_values = [entry['compound'] for entry in data]
# Creating positions for bars
positions = range(len(data))
# Plotting the stacked bars
fig, ax = plt.subplots(figsize=(20,10))
width = 0.7
# Bottom bar (red)
ax.bar(positions, neg_values, width=width, color='#961e1e', label='Negative')
# Middle bar (gray)
ax.bar(positions, neu_values, width=width, bottom=neg_values, color='#999', label='Neutral')
# Top bar (green)
ax.bar(positions, pos_values, width=width, bottom=np.array(neg_values) + np.array(neu_values), color='#015501', label='Positive')
# Adding labels and title
plt.xlabel('Reviews', fontdict={'fontname': 'HP Simplified', 'fontsize': 30, 'weight':'bold', 'color':'#fff'}, labelpad=20)
plt.ylabel('Polarity Scores', fontdict={'fontname': 'HP Simplified', 'fontsize': 30, 'weight':'bold', 'color':'#fff'}, labelpad=20)
plt.title(title, fontdict={'fontname': 'HP Simplified', 'fontsize': 40, 'weight':'bold', 'color':'#fff'}, pad=20)
plt.yticks(fontname='HP Simplified', fontsize=24, color="#fff")
# Remove X-axis labels
ax.set_xticks([])
ax.set_facecolor('#000')
# Adding legend
legend = plt.legend(loc='upper right', bbox_to_anchor=(1.25, 1), prop={'family': 'HP Simplified', 'size': 32})
average = np.mean(compound_values)
text = f'Average Compound Score'
avg_text = f'\n{average:.2f}'
plt.text(0.91, 0.66, text, fontsize=20, fontname='HP Simplified', weight="bold", color="white", ha='center', va='center', transform=fig.transFigure)
plt.text(0.91, 0.64, avg_text, fontsize=36, fontname='HP Simplified', weight="bold", color="white", ha='center', va='center', transform=fig.transFigure)
# Set the background color
fig.set_facecolor('#1e1e1e')
plt.tight_layout()
# Convert the Matplotlib figure to a Flask response
output = BytesIO()
FigureCanvas(fig).print_png(output)
plt.close()
return base64.b64encode(output.getvalue()).decode('utf-8')
def plot_pie(data, title):
unique, counts = np.unique(data, return_counts=True)
explode = ()
if len(unique) > 1:
explode = (0, 0.1)
else:
explode = (0,)
#add colors
colors = []
if unique[0] == "Negative":
colors = ['#961e1e','#024d0f']
elif unique[0] == "Positive":
colors = ['#024d0f','#961e1e']
fig, ax = plt.subplots()
fig.patch.set_facecolor('#1e1e1e')
ax.pie(counts, explode=explode, labels=unique, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90)
# Set custom fonts for title, labels, and autopct
ax.set_title(title, fontdict={'family': 'HP Simplified', 'color': 'White', 'weight': 'bold', 'size': 28})
for text in ax.texts:
text.set_fontfamily('HP Simplified')
text.set_fontsize('20')
text.set_fontweight('bold')
text.set_color('White')
# Equal aspect ratio ensures that pie is drawn as a circle
ax.axis('equal')
plt.tight_layout()
output = BytesIO()
FigureCanvas(fig).print_png(output)
plt.close()
return base64.b64encode(output.getvalue()).decode('utf-8')
@app.route('/data/bg.png')
def bg():
return send_file('data/bg.png')
@app.route('/data/search-icon.svg')
def search_icon():
return send_file('data/search-icon.svg')
@app.route('/data/favicon.ico')
def favicon():
return send_file('data/favicon.ico')
@app.route('/data/HPSimplified.ttf')
def font():
return send_file('data/HPSimplified.ttf')
@app.route('/data/search.gif')
def searchload():
return send_file('./data/search.gif')
@app.route('/')
def home():
return render_template('index.html')
@app.route('/search')
def search():
query = request.args.get('query')
if query:
search_data = search_links(query)
if len(search_data[0]) == 0:
search_data[1] = "No links found for your query"
return render_template('search.html', links=search_data[0], Err=search_data[1])
else:
return redirect('/')
@app.route('/review')
def review():
url = request.args.get('url')
if url:
url = url
user = get_reviews(url, 'user')
critic = get_reviews(url, 'all')
user_pie_img, user_bar_img, critic_pie_img, critic_bar_img = '', '', '', ''
if len(user) > 0:
user_polarity = get_polarity_scores(user)
user_reviews = analyze_sentiment(user)
user_bar = plot_bar(user_polarity, "User Sentiments")
user_pie = plot_pie(user_reviews, "User Reviews")
user_bar_img = f'<img src="data:image/png;base64,{user_bar}" alt="User Reviews Bar Plot">'
user_pie_img = f'<img src="data:image/png;base64,{user_pie}" alt="User Reviews Pie Plot">'
else:
user_bar_img = "No User Reviews Found"
user_pie_img = "No User Reviews Found"
if len(critic) > 0:
critic_polarity = get_polarity_scores(critic)
critic_reviews = analyze_sentiment(critic)
critic_bar = plot_bar(critic_polarity, "Critic Sentiments")
critic_pie = plot_pie(critic_reviews, "Critic Reviews")
critic_bar_img = f'<img src="data:image/png;base64,{critic_bar}" alt="Critic Reviews Bar Plot">'
critic_pie_img = f'<img src="data:image/png;base64,{critic_pie}" alt="Critic Reviews Pie Plot">'
else:
critic_bar_img = "No Critic Reviews Found"
critic_pie_img = "No Critic Reviews Found"
return render_template('review.html', user_bar=user_bar_img, user_pie=user_pie_img, critic_bar=critic_bar_img, critic_pie=critic_pie_img, title=show_info[0], url=url, poster=show_info[1])
else:
return redirect('/')
@app.errorhandler(404)
def not_found_error(error):
return render_template('404.html'), 404
if __name__ == '__main__':
app.run(host='0.0.0.0', port=3000, debug=True) |