FahadAlam commited on
Commit
e9b983f
1 Parent(s): 46cf766

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -18
app.py CHANGED
@@ -1,25 +1,61 @@
1
- import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
4
 
5
- tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
6
- model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- def predict(input, history=[]):
9
- # tokenize the new input sentence
10
- new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
11
 
12
- # append the new user input tokens to the chat history
13
- bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
14
 
15
- # generate a response
16
- history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
- # convert the tokens to text, and then split the responses into lines
19
- response = tokenizer.decode(history[0]).split("<|endoftext|>")
20
- response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
21
- return response, history
22
 
23
- gr.Interface(fn=predict,
24
- inputs=["text", "state"],
25
- outputs=["chatbot", "state"]).launch()
 
 
 
 
 
 
1
+ from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
 
2
  import torch
3
 
4
+ import gradio as gr
5
+
6
+ mname = "facebook/blenderbot-400M-distill"
7
+ model = BlenderbotForConditionalGeneration.from_pretrained(mname)
8
+ tokenizer = BlenderbotTokenizer.from_pretrained(mname)
9
+
10
+
11
+ def take_last_tokens(inputs, note_history, history):
12
+ """Filter the last 128 tokens"""
13
+ if inputs['input_ids'].shape[1] > 128:
14
+ inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()])
15
+ inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()])
16
+ note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])]
17
+ history = history[1:]
18
+
19
+ return inputs, note_history, history
20
+
21
+
22
+ def add_note_to_history(note, note_history):
23
+ """Add a note to the historical information"""
24
+ note_history.append(note)
25
+ note_history = '</s> <s>'.join(note_history)
26
+ return [note_history]
27
 
 
 
 
28
 
29
+ title = "Mantain a conversation with the bot"
 
30
 
31
+ def chatbot(message, history):
32
+ history = history or []
33
+ if history:
34
+ history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])]
35
+ else:
36
+ history_useful = []
37
+
38
+ history_useful = add_note_to_history(message, history_useful)
39
+
40
+ inputs = tokenizer(history_useful, return_tensors="pt")
41
+ inputs, history_useful, history = take_last_tokens(inputs, history_useful, history)
42
+
43
+ reply_ids = model.generate(**inputs)
44
+ response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
45
+ history_useful = add_note_to_history(response, history_useful)
46
+
47
+
48
+ list_history = history_useful[0].split('</s> <s>')
49
+ history.append((list_history[-2], list_history[-1]))
50
+
51
+ return history, history
52
 
 
 
 
 
53
 
54
+ gr.Interface(
55
+ fn=chatbot,
56
+ css=".footer {display:none !important}",
57
+ inputs=["text", "state"],
58
+ outputs=["chatbot", "state"],
59
+ title=title,
60
+ allow_flagging="never",
61
+ ).launch( debug= True)