|
import sys |
|
import os |
|
import re |
|
import time |
|
import math |
|
import torch |
|
import random |
|
import spaces |
|
|
|
os.environ["COQUI_TOS_AGREED"] = "1" |
|
|
|
import gradio as gr |
|
from TTS.api import TTS |
|
from TTS.utils.manage import ModelManager |
|
|
|
max_64_bit_int = 2**63 - 1 |
|
model_names = TTS().list_models() |
|
print(model_names.__dict__) |
|
print(model_names.__dir__()) |
|
model_name = "tts_models/multilingual/multi-dataset/xtts_v2" |
|
m = model_name |
|
|
|
|
|
if torch.cuda.is_available(): |
|
|
|
device_type = "cuda" |
|
device_selection = "cuda:0" |
|
data_type = torch.float16 |
|
else: |
|
|
|
device_type = "cpu" |
|
device_selection = "cpu" |
|
data_type = torch.float32 |
|
|
|
tts = TTS(model_name, gpu=torch.cuda.is_available()) |
|
tts.to(device_type) |
|
|
|
def update_output(output_number): |
|
return [ |
|
gr.update(visible = (2 <= output_number)), |
|
gr.update(visible = (3 <= output_number)), |
|
gr.update(visible = (4 <= output_number)), |
|
gr.update(visible = (5 <= output_number)), |
|
gr.update(visible = (6 <= output_number)), |
|
gr.update(visible = (7 <= output_number)), |
|
gr.update(visible = (8 <= output_number)), |
|
gr.update(visible = (9 <= output_number)) |
|
] |
|
|
|
def predict0(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()): |
|
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 0, generation_number, temperature, is_randomize_seed, seed, progress) |
|
|
|
def predict1(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()): |
|
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 1, generation_number, temperature, is_randomize_seed, seed, progress) |
|
|
|
def predict2(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()): |
|
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 2, generation_number, temperature, is_randomize_seed, seed, progress) |
|
|
|
def predict3(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()): |
|
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 3, generation_number, temperature, is_randomize_seed, seed, progress) |
|
|
|
def predict4(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()): |
|
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 4, generation_number, temperature, is_randomize_seed, seed, progress) |
|
|
|
def predict5(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()): |
|
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 5, generation_number, temperature, is_randomize_seed, seed, progress) |
|
|
|
def predict6(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()): |
|
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 6, generation_number, temperature, is_randomize_seed, seed, progress) |
|
|
|
def predict7(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()): |
|
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 7, generation_number, temperature, is_randomize_seed, seed, progress) |
|
|
|
def predict8(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()): |
|
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 8, generation_number, temperature, is_randomize_seed, seed, progress) |
|
|
|
def predict( |
|
prompt, |
|
language, |
|
gender, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
i, |
|
generation_number, |
|
temperature, |
|
is_randomize_seed, |
|
seed, |
|
progress = gr.Progress() |
|
): |
|
if generation_number <= i: |
|
return ( |
|
None, |
|
None, |
|
) |
|
start = time.time() |
|
progress(0, desc = "Preparing data...") |
|
|
|
if len(prompt) < 2: |
|
gr.Warning("Please give a longer prompt text") |
|
return ( |
|
None, |
|
None, |
|
) |
|
if 50000 < len(prompt): |
|
gr.Warning("Text length limited to 50,000 characters for this demo, please try shorter text") |
|
return ( |
|
None, |
|
None, |
|
) |
|
|
|
if use_mic: |
|
if mic_file_path is None: |
|
gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios") |
|
return ( |
|
None, |
|
None, |
|
) |
|
else: |
|
speaker_wav = mic_file_path |
|
else: |
|
speaker_wav = audio_file_pth |
|
|
|
if speaker_wav is None: |
|
if gender == "male": |
|
speaker_wav = "./examples/male.mp3" |
|
else: |
|
speaker_wav = "./examples/female.wav" |
|
|
|
output_filename = f"{i + 1}_{re.sub('[^a-zA-Z0-9]', '_', language)}_{re.sub('[^a-zA-Z0-9]', '_', prompt)}"[:180] + ".wav" |
|
|
|
try: |
|
if language == "fr": |
|
if m.find("your") != -1: |
|
language = "fr-fr" |
|
if m.find("/fr/") != -1: |
|
language = None |
|
|
|
predict_on_gpu(i, generation_number, prompt, speaker_wav, language, output_filename, temperature, is_randomize_seed, seed, progress) |
|
except RuntimeError as e : |
|
if "device-assert" in str(e): |
|
|
|
gr.Warning("Unhandled Exception encounter, please retry in a minute") |
|
print("Cuda device-assert Runtime encountered need restart") |
|
sys.exit("Exit due to cuda device-assert") |
|
else: |
|
raise e |
|
|
|
end = time.time() |
|
secondes = int(end - start) |
|
minutes = math.floor(secondes / 60) |
|
secondes = secondes - (minutes * 60) |
|
hours = math.floor(minutes / 60) |
|
minutes = minutes - (hours * 60) |
|
information = ("Start again to get a different result. " if is_randomize_seed else "") + "The sound has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec." |
|
|
|
return ( |
|
output_filename, |
|
information, |
|
) |
|
|
|
@spaces.GPU(duration=60) |
|
def predict_on_gpu( |
|
i, |
|
generation_number, |
|
prompt, |
|
speaker_wav, |
|
language, |
|
output_filename, |
|
temperature, |
|
is_randomize_seed, |
|
seed, |
|
progress |
|
): |
|
progress((i + .5) / generation_number, desc = "Generating the audio #" + str(i + 1) + "...") |
|
if is_randomize_seed: |
|
seed = random.randint(0, max_64_bit_int) |
|
|
|
random.seed(seed) |
|
torch.manual_seed(seed) |
|
|
|
tts.tts_to_file( |
|
text = prompt, |
|
file_path = output_filename, |
|
speaker_wav = speaker_wav, |
|
language = language, |
|
temperature = temperature |
|
) |
|
|
|
with gr.Blocks() as interface: |
|
gr.HTML( |
|
""" |
|
<h1><center>XTTS</center></h1> |
|
<big><center>Generate long vocal from text in several languages following voice freely, without account, without watermark and download it</center></big> |
|
<br/> |
|
<a href="https://huggingface.co/coqui/XTTS-v1">XTTS</a> is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip. |
|
<br/> |
|
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible. |
|
<br/> |
|
This is the same model that powers our creator application <a href="https://coqui.ai">Coqui Studio</a> as well as the <a href="https://docs.coqui.ai">Coqui API</a>. In production we apply modifications to make low-latency streaming possible. |
|
<br/> |
|
Leave a star on the Github <a href="https://github.com/coqui-ai/TTS">TTS</a>, where our open-source inference and training code lives. |
|
<br/> |
|
<p>To avoid the queue, you can duplicate this space on CPU, GPU or ZERO space GPU: |
|
<br/> |
|
<a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/Multi-language_Text-to-Speech?duplicate=true"> |
|
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> |
|
</p> |
|
""" |
|
) |
|
with gr.Column(): |
|
prompt = gr.Textbox( |
|
label = "Text Prompt", |
|
info = "One or two sentences at a time is better", |
|
value = "Hello, World! Here is an example of light voice cloning. Try to upload your best audio samples quality", |
|
elem_id = "prompt-id", |
|
) |
|
with gr.Group(): |
|
language = gr.Dropdown( |
|
label="Language", |
|
info="Select an output language for the synthesised speech", |
|
choices=[ |
|
["Arabic", "ar"], |
|
["Brazilian Portuguese", "pt"], |
|
["Mandarin Chinese", "zh-cn"], |
|
["Czech", "cs"], |
|
["Dutch", "nl"], |
|
["English", "en"], |
|
["French", "fr"], |
|
["German", "de"], |
|
["Italian", "it"], |
|
["Polish", "pl"], |
|
["Russian", "ru"], |
|
["Spanish", "es"], |
|
["Turkish", "tr"] |
|
], |
|
max_choices=1, |
|
value="en", |
|
elem_id = "language-id", |
|
) |
|
gr.HTML("More languages <a href='https://huggingface.co/spaces/Brasd99/TTS-Voice-Cloner'>here</a>") |
|
gender = gr.Radio( |
|
["female", "male"], |
|
label="Gender", |
|
info="Gender of the voice", |
|
elem_id = "gender-id", |
|
) |
|
audio_file_pth = gr.Audio( |
|
label="Reference Audio", |
|
|
|
type="filepath", |
|
value=None, |
|
elem_id = "audio-file-pth-id", |
|
) |
|
mic_file_path = gr.Audio( |
|
sources=["microphone"], |
|
type="filepath", |
|
|
|
label="Use Microphone for Reference", |
|
elem_id = "mic-file-path-id", |
|
) |
|
use_mic = gr.Checkbox( |
|
label = "Check to use Microphone as Reference", |
|
value = False, |
|
info = "Notice: Microphone input may not work properly under traffic", |
|
elem_id = "use-mic-id", |
|
) |
|
generation_number = gr.Slider( |
|
minimum = 1, |
|
maximum = 9, |
|
step = 1, |
|
value = 1, |
|
label = "Generation number", |
|
info = "How many audios to generate", |
|
elem_id = "generation-number-id" |
|
) |
|
with gr.Accordion("Advanced options", open = False): |
|
temperature = gr.Slider( |
|
minimum = 0, |
|
maximum = 10, |
|
step = .1, |
|
value = .75, |
|
label = "Temperature", |
|
info = "Maybe useless", |
|
elem_id = "temperature-id" |
|
) |
|
randomize_seed = gr.Checkbox( |
|
label = "\U0001F3B2 Randomize seed", |
|
value = True, |
|
info = "If checked, result is always different", |
|
elem_id = "randomize-seed-id" |
|
) |
|
seed = gr.Slider( |
|
minimum = 0, |
|
maximum = max_64_bit_int, |
|
step = 1, |
|
randomize = True, |
|
label = "Seed", |
|
elem_id = "seed-id" |
|
) |
|
|
|
submit = gr.Button( |
|
"🚀 Speak", |
|
variant = "primary", |
|
elem_id = "submit-id" |
|
) |
|
|
|
synthesised_audio_1 = gr.Audio( |
|
label="Synthesised Audio #1", |
|
autoplay = False, |
|
elem_id = "synthesised-audio-1-id" |
|
) |
|
|
|
synthesised_audio_2 = gr.Audio( |
|
label="Synthesised Audio #2", |
|
autoplay = False, |
|
elem_id = "synthesised-audio-2-id", |
|
visible = False |
|
) |
|
|
|
synthesised_audio_3 = gr.Audio( |
|
label="Synthesised Audio #3", |
|
autoplay = False, |
|
elem_id = "synthesised-audio-3-id", |
|
visible = False |
|
) |
|
|
|
synthesised_audio_4 = gr.Audio( |
|
label="Synthesised Audio #4", |
|
autoplay = False, |
|
elem_id = "synthesised-audio-4-id", |
|
visible = False |
|
) |
|
|
|
synthesised_audio_5 = gr.Audio( |
|
label="Synthesised Audio #5", |
|
autoplay = False, |
|
elem_id = "synthesised-audio-5-id", |
|
visible = False |
|
) |
|
|
|
synthesised_audio_6 = gr.Audio( |
|
label="Synthesised Audio #6", |
|
autoplay = False, |
|
elem_id = "synthesised-audio-6-id", |
|
visible = False |
|
) |
|
|
|
synthesised_audio_7 = gr.Audio( |
|
label="Synthesised Audio #7", |
|
autoplay = False, |
|
elem_id = "synthesised-audio-7-id", |
|
visible = False |
|
) |
|
|
|
synthesised_audio_8 = gr.Audio( |
|
label="Synthesised Audio #8", |
|
autoplay = False, |
|
elem_id = "synthesised-audio-8-id", |
|
visible = False |
|
) |
|
|
|
synthesised_audio_9 = gr.Audio( |
|
label="Synthesised Audio #9", |
|
autoplay = False, |
|
elem_id = "synthesised-audio-9-id", |
|
visible = False |
|
) |
|
information = gr.HTML() |
|
|
|
submit.click(fn = update_output, inputs = [ |
|
generation_number |
|
], outputs = [ |
|
synthesised_audio_2, |
|
synthesised_audio_3, |
|
synthesised_audio_4, |
|
synthesised_audio_5, |
|
synthesised_audio_6, |
|
synthesised_audio_7, |
|
synthesised_audio_8, |
|
synthesised_audio_9 |
|
], queue = False, show_progress = False).success(predict0, inputs = [ |
|
prompt, |
|
language, |
|
gender, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
generation_number, |
|
temperature, |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
synthesised_audio_1, |
|
information |
|
], scroll_to_output = True).success(predict1, inputs = [ |
|
prompt, |
|
language, |
|
gender, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
generation_number, |
|
temperature, |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
synthesised_audio_2, |
|
information |
|
], scroll_to_output = True).success(predict2, inputs = [ |
|
prompt, |
|
language, |
|
gender, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
generation_number, |
|
temperature, |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
synthesised_audio_3, |
|
information |
|
], scroll_to_output = True).success(predict3, inputs = [ |
|
prompt, |
|
language, |
|
gender, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
generation_number, |
|
temperature, |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
synthesised_audio_4, |
|
information |
|
], scroll_to_output = True).success(predict4, inputs = [ |
|
prompt, |
|
language, |
|
gender, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
generation_number, |
|
temperature, |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
synthesised_audio_5, |
|
information |
|
], scroll_to_output = True).success(predict5, inputs = [ |
|
prompt, |
|
language, |
|
gender, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
generation_number, |
|
temperature, |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
synthesised_audio_6, |
|
information |
|
], scroll_to_output = True).success(predict6, inputs = [ |
|
prompt, |
|
language, |
|
gender, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
generation_number, |
|
temperature, |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
synthesised_audio_7, |
|
information |
|
], scroll_to_output = True).success(predict7, inputs = [ |
|
prompt, |
|
language, |
|
gender, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
generation_number, |
|
temperature, |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
synthesised_audio_8, |
|
information |
|
], scroll_to_output = True).success(predict8, inputs = [ |
|
prompt, |
|
language, |
|
gender, |
|
audio_file_pth, |
|
mic_file_path, |
|
use_mic, |
|
generation_number, |
|
temperature, |
|
randomize_seed, |
|
seed |
|
], outputs = [ |
|
synthesised_audio_9, |
|
information |
|
], scroll_to_output = True) |
|
|
|
interface.queue(max_size = 5).launch(debug=True) |