File size: 10,413 Bytes
0cc374b
 
 
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a53f08
 
 
0cc374b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a53f08
 
 
0cc374b
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
4a53f08
 
 
0cc374b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
4a53f08
0cc374b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
 
 
4a53f08
0cc374b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from diffusers import (
    ControlNetModel,
    DiffusionPipeline,
    StableDiffusionControlNetPipeline,
)
import gradio as gr
import numpy as np
import os
import time
import math
import random
import imageio
from PIL import Image, ImageFilter
import torch

max_64_bit_int = 2**63 - 1

device = "cuda" if torch.cuda.is_available() else "cpu"
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_ip2p", torch_dtype = torch.float32)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", safety_checker = None, controlnet = controlnet, torch_dtype = torch.float32
)
pipe = pipe.to(device)

def check(
    source_img,
    prompt,
    negative_prompt,
    denoising_steps,
    num_inference_steps,
    guidance_scale,
    image_guidance_scale,
    randomize_seed,
    seed,
    progress = gr.Progress()):
    if source_img is None:
        raise gr.Error("Please provide an image.")

    if prompt is None or prompt == "":
        raise gr.Error("Please provide a prompt input.")

def pix2pix(
    source_img,
    prompt,
    negative_prompt,
    denoising_steps,
    num_inference_steps,
    guidance_scale,
    image_guidance_scale,
    randomize_seed,
    seed,
    progress = gr.Progress()):
    check(
        source_img,
        prompt,
        negative_prompt,
        denoising_steps,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        randomize_seed,
        seed
    )
    start = time.time()
    progress(0, desc = "Preparing data...")

    if negative_prompt is None:
        negative_prompt = ""

    if denoising_steps is None:
        denoising_steps = 0

    if num_inference_steps is None:
        num_inference_steps = 20

    if guidance_scale is None:
        guidance_scale = 5

    if image_guidance_scale is None:
        image_guidance_scale = 1.5

    if randomize_seed:
        seed = random.randint(0, max_64_bit_int)

    random.seed(seed)
    #pipe = pipe.manual_seed(seed)

    try:
        imageio.imwrite("data.png", source_img)
    except:
        raise gr.Error("Can't read input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")

    # Input image
    try:
        input_image = Image.open("data.png").convert("RGB")
    except:
        raise gr.Error("Can't open input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")

    original_height, original_width, dummy_channel = np.array(input_image).shape
    output_width = original_width
    output_height = original_height
    mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "white")

    limitation = "";

    # Limited to 1 million pixels
    if 1024 * 1024 < output_width * output_height:
        factor = ((1024 * 1024) / (output_width * output_height))**0.5
        output_width = math.floor(output_width * factor)
        output_height = math.floor(output_height * factor)

        limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";

    # Width and height must be multiple of 8
    output_width = output_width - (output_width % 8)
    output_height = output_height - (output_height % 8)
    progress(None, desc = "Processing...")

    output_image = pipe(
        seeds=[seed],
        width = output_width,
        height = output_height,
        prompt = prompt,
        negative_prompt = negative_prompt,
        image = input_image,
        mask_image = mask_image,
        num_inference_steps = num_inference_steps,
        guidance_scale = guidance_scale,
        image_guidance_scale = image_guidance_scale,
        denoising_steps = denoising_steps,
        show_progress_bar = True
    ).images[0]

    if limitation != "":
        output_image = output_image.resize((original_width, original_height))

    end = time.time()
    secondes = int(end - start)
    minutes = secondes // 60
    secondes = secondes - (minutes * 60)
    hours = minutes // 60
    minutes = minutes - (hours * 60)
    return [
        output_image,
        "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + f'{output_width * output_height:,}' + " pixels. The image have been generated in " + str(hours) + " h, " + str(minutes) + " min, " + str(secondes) + " sec." + limitation
    ]

with gr.Blocks() as interface:
    gr.Markdown(
        """
        <p style="text-align: center;"><b><big><big><big>Instruct Pix2Pix demo</big></big></big></b></p>
        <p style="text-align: center;">Modifies your image using a textual instruction, up to 1 million pixels, freely, without account, without watermark, without installation, which can be downloaded</p>
        <br/>
        <br/>
        🚀 Powered by <i>SD 1.5</i> and <i>ControlNet</i>
        <br/>
        <ul>
        <li>To change the <b>view angle</b> of your image, I recommend to use <i>Zero123</i>,</li>
        <li>To <b>upscale</b> your image, I recommend to use <i>Ilaria Upscaler</i>,</li>
        <li>To <b>slightly change</b> your image, I recommend to use <i>Image-to-Image SDXL</i>,</li>
        <li>To change <b>one detail</b> on your image, I recommend to use <i>Inpaint SDXL</i>,</li>
        <li>To remove the <b>background</b> of your image, I recommend to use <i>BRIA</i>,</li>
        <li>To enlarge the <b>viewpoint</b> of your image, I recommend to use <i>Uncrop</i>,</li>
        <li>To make a <b>tile</b> of your image, I recommend to use <i>Make My Image Tile</i>,</li>
        </ul>
        <br/>
        🐌 Slow process... ~1 hour. If this space does not work or you want a faster run, use <i>Instruct Pix2Pix</i> available on terrapretapermaculture's <i>ControlNet-v1-1</i> space (last tab) or on <i>Dezgo</i> site.<br>You can duplicate this space on a free account, it works on CPU.<br/>
        <a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Instruct-Pix2Pix?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
        <br/>
        ⚖️ You can use, modify and share the generated images but not for commercial uses.
        """
    )
    with gr.Column():
        source_img = gr.Image(label = "Your image", sources = ["upload"], type = "numpy")
        prompt = gr.Textbox(label = 'Prompt', info = "Instruct what to change in the image", placeholder = 'Order the AI what to change in the image')
        with gr.Accordion("Advanced options", open = False):
            negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the image', value = 'Watermark')
            denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 0, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
            num_inference_steps = gr.Slider(minimum = 10, maximum = 500, value = 20, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
            guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 5, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
            image_guidance_scale = gr.Slider(minimum = 1, value = 1.5, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
            randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
            seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")

        submit = gr.Button("Modify", variant = "primary")

        modified_image = gr.Image(label = "Modified image")
        information = gr.Label(label = "Information")

    submit.click(check, inputs = [
        source_img,
        prompt,
        negative_prompt,
        denoising_steps,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        randomize_seed,
        seed
    ], outputs = [], queue = False, show_progress = False).success(pix2pix, inputs = [
        source_img,
        prompt,
        negative_prompt,
        denoising_steps,
        num_inference_steps,
        guidance_scale,
        image_guidance_scale,
        randomize_seed,
        seed
    ], outputs = [
        modified_image,
        information
    ], scroll_to_output = True)

    gr.Examples(
	    inputs = [
            source_img,
            prompt,
            negative_prompt,
            denoising_steps,
            num_inference_steps,
            guidance_scale,
            image_guidance_scale,
            randomize_seed,
            seed
        ],
	    outputs = [
            modified_image,
            information
        ],
        examples = [
                [
                    "Example1.webp",
                    "What if it's snowing?",
                    "Watermark",
                    1,
                    20,
                    5,
                    1.5,
                    True,
                    42
                ],
                [
                    "Example2.png",
                    "What if this woman had brown hair?",
                    "Watermark",
                    1,
                    20,
                    5,
                    1.5,
                    True,
                    42
                ],
                [
                    "Example3.jpeg",
                    "Replace the house by a windmill",
                    "Watermark",
                    1,
                    20,
                    5,
                    1.5,
                    True,
                    42
                ],
            ],
        cache_examples = False,
    )

    interface.queue().launch()