Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import FluxPipeline | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, output_format="png"): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if width*height*num_inference_steps <= 1024*1024*8: | |
return infer_in_1min(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format) | |
else: | |
return infer_in_5min(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format) | |
def infer_in_1min(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format): | |
return infer_on_gpu(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format) | |
def infer_in_5min(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format): | |
return infer_on_gpu(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format) | |
def infer_on_gpu(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format, progress=gr.Progress(track_tqdm=True)): | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
width = width, | |
height = height, | |
num_inference_steps = num_inference_steps, | |
generator = generator, | |
guidance_scale=guidance_scale | |
).images[0] | |
return gr.update(format = output_format, value = image), seed | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
with gr.Blocks(delete_cache=(4000, 4000)) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# [FLUX.1 [merged]](https://huggingface.co/sayakpaul/FLUX.1-merged) | |
Merge by [Sayak Paul](https://huggingface.co/sayakpaul) of 2 of the 12B param rectified flow transformers [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev) and [FLUX.1 [schnell]](https://huggingface.co/black-forest-labs/FLUX.1-schnell) by [Black Forest Labs](https://blackforestlabs.ai/) | |
""") | |
prompt = gr.Text( | |
label = "Prompt", | |
show_label = False, | |
lines = 2, | |
autofocus = True, | |
placeholder = "Enter your prompt", | |
container = False | |
) | |
output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
run_button = gr.Button(value = "🚀 Generate", variant="primary") | |
result = gr.Image(label="Result", show_label=False, format="png") | |
gr.Examples( | |
examples = examples, | |
fn = infer, | |
inputs = [prompt], | |
outputs = [result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format], | |
outputs = [result, seed] | |
) | |
demo.queue(default_concurrency_limit=2).launch(show_error=True) | |