FLUX.1-merged / app.py
Fabrice-TIERCELIN's picture
5 min duration
484cdbe verified
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import FluxPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, output_format="png"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if width*height*num_inference_steps <= 1024*1024*8:
return infer_in_1min(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)
else:
return infer_in_5min(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)
@spaces.GPU(duration=60)
def infer_in_1min(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format):
return infer_on_gpu(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)
@spaces.GPU(duration=300)
def infer_in_5min(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format):
return infer_on_gpu(prompt=prompt, seed=seed, randomize_seed=randomize_seed, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, output_format=output_format)
def infer_on_gpu(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format, progress=gr.Progress(track_tqdm=True)):
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=guidance_scale
).images[0]
return gr.update(format = output_format, value = image), seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
with gr.Blocks(delete_cache=(4000, 4000)) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# [FLUX.1 [merged]](https://huggingface.co/sayakpaul/FLUX.1-merged)
Merge by [Sayak Paul](https://huggingface.co/sayakpaul) of 2 of the 12B param rectified flow transformers [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev) and [FLUX.1 [schnell]](https://huggingface.co/black-forest-labs/FLUX.1-schnell) by [Black Forest Labs](https://blackforestlabs.ai/)
""")
prompt = gr.Text(
label = "Prompt",
show_label = False,
lines = 2,
autofocus = True,
placeholder = "Enter your prompt",
container = False
)
output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
run_button = gr.Button(value = "🚀 Generate", variant="primary")
result = gr.Image(label="Result", show_label=False, format="png")
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, output_format],
outputs = [result, seed]
)
demo.queue(default_concurrency_limit=2).launch(show_error=True)