FINGU-AI commited on
Commit
a743a65
1 Parent(s): fb9d705

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -8
app.py CHANGED
@@ -6,7 +6,7 @@ import torch
6
  import random
7
  import time
8
  import re
9
- from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
10
 
11
 
12
  # Set an environment variable
@@ -16,9 +16,10 @@ zero = torch.Tensor([0]).cuda()
16
  print(zero.device) # <-- 'cpu' 🤔
17
 
18
 
19
- model_id = 'FINGU-AI/Finance-OrpoMistral-7B' #attn_implementation="flash_attention_2",
20
  model = AutoModelForCausalLM.from_pretrained(model_id,attn_implementation="sdpa", torch_dtype= torch.bfloat16)
21
  tokenizer = AutoTokenizer.from_pretrained(model_id)
 
22
  model.to('cuda')
23
 
24
  # terminators = [
@@ -38,21 +39,25 @@ generation_params = {
38
  @spaces.GPU
39
  def inference(query):
40
  messages = [
41
- {"role": "system", "content": """You are a friendly chatbot who always responds in the style of a trader."""},
42
  {"role": "user", "content": f"{query}"},
43
  ]
44
 
45
  tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
46
 
47
- outputs = model.generate(tokenized_chat, **generation_params)
48
- decoded_outputs = tokenizer.batch_decode(outputs)
49
- assistant_response = decoded_outputs[0].split("Assistant:")[-1].strip()
50
- return assistant_response
51
 
 
 
 
 
 
 
52
 
53
  def response(message, history):
54
  text = inference(message)
55
  for i in range(len(text)):
56
  time.sleep(0.01)
57
  yield text[: i + 1]
58
- gr.ChatInterface(response).launch()
 
6
  import random
7
  import time
8
  import re
9
+ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextStreamer
10
 
11
 
12
  # Set an environment variable
 
16
  print(zero.device) # <-- 'cpu' 🤔
17
 
18
 
19
+ model_id = 'FINGU-AI/Qwen-Orpo-v1' #attn_implementation="flash_attention_2",
20
  model = AutoModelForCausalLM.from_pretrained(model_id,attn_implementation="sdpa", torch_dtype= torch.bfloat16)
21
  tokenizer = AutoTokenizer.from_pretrained(model_id)
22
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
23
  model.to('cuda')
24
 
25
  # terminators = [
 
39
  @spaces.GPU
40
  def inference(query):
41
  messages = [
42
+ {"role": "system", "content": """You are ai trader, invester helpfull assistant."""},
43
  {"role": "user", "content": f"{query}"},
44
  ]
45
 
46
  tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
47
 
48
+ outputs = model.generate(tokenized_chat, **generation_params, streamer=streamer)
49
+ return outputs
 
 
50
 
51
+ examples = ['How can options strategies such as straddles, strangles, and spreads be used to hedge against market volatility?',
52
+ 'How do changes in interest rates, inflation, and GDP growth impact stock and bond markets?',
53
+ 'What are the key components and strategies involved in developing an effective algorithmic trading system?',
54
+ 'How can investors integrate environmental, social, and governance (ESG) factors into their investment decisions to achieve both financial returns and social impact?',
55
+ 'How do geopolitical events such as trade wars, political instability, and international conflicts affect global financial markets?',
56
+ 'How does blockchain technology have the potential to disrupt financial markets and investment practices?']
57
 
58
  def response(message, history):
59
  text = inference(message)
60
  for i in range(len(text)):
61
  time.sleep(0.01)
62
  yield text[: i + 1]
63
+ gr.ChatInterface(response,examples=examples).launch()