Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,9 +12,14 @@ import engine
|
|
12 |
from model import BERTBaseUncased
|
13 |
|
14 |
MODEL = None
|
15 |
-
|
16 |
T = tokenizer.TweetTokenizer(preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def preprocess(text):
|
20 |
tokens = T.tokenize(text)
|
@@ -39,7 +44,7 @@ def preprocess(text):
|
|
39 |
|
40 |
def sentence_prediction(sentence):
|
41 |
sentence = preprocess(sentence)
|
42 |
-
|
43 |
|
44 |
test_dataset = dataset.BERTDataset(
|
45 |
review=[sentence],
|
@@ -52,23 +57,16 @@ def sentence_prediction(sentence):
|
|
52 |
num_workers=3
|
53 |
)
|
54 |
|
55 |
-
device = config.device
|
56 |
-
|
57 |
-
model = BERTBaseUncased()
|
58 |
-
model.load_state_dict(torch.load(
|
59 |
-
model_path, map_location=torch.device(device)))
|
60 |
-
model.to(device)
|
61 |
-
|
62 |
outputs, [] = engine.predict_fn(test_data_loader, model, device)
|
63 |
print(outputs)
|
64 |
-
return
|
65 |
|
66 |
interface = gr.Interface(
|
67 |
fn=sentence_prediction,
|
68 |
inputs='text',
|
69 |
outputs=['text'],
|
70 |
title='Sentiment Analysis',
|
71 |
-
description='Get the positive/negative sentiment for the given input.'
|
72 |
)
|
73 |
|
74 |
|
|
|
12 |
from model import BERTBaseUncased
|
13 |
|
14 |
MODEL = None
|
15 |
+
|
16 |
T = tokenizer.TweetTokenizer(preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False)
|
17 |
|
18 |
+
device = config.device
|
19 |
+
|
20 |
+
model = BERTBaseUncased()
|
21 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device(device)))
|
22 |
+
model.to(device)
|
23 |
|
24 |
def preprocess(text):
|
25 |
tokens = T.tokenize(text)
|
|
|
44 |
|
45 |
def sentence_prediction(sentence):
|
46 |
sentence = preprocess(sentence)
|
47 |
+
|
48 |
|
49 |
test_dataset = dataset.BERTDataset(
|
50 |
review=[sentence],
|
|
|
57 |
num_workers=3
|
58 |
)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
outputs, [] = engine.predict_fn(test_data_loader, model, device)
|
61 |
print(outputs)
|
62 |
+
return label_full_decoder(outputs[0])
|
63 |
|
64 |
interface = gr.Interface(
|
65 |
fn=sentence_prediction,
|
66 |
inputs='text',
|
67 |
outputs=['text'],
|
68 |
title='Sentiment Analysis',
|
69 |
+
description='Get the positive/neutral/negative sentiment for the given input.'
|
70 |
)
|
71 |
|
72 |
|