Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from tqdm import tqdm | |
from utils import categorical_accuracy | |
def loss_fn(outputs, targets): | |
return nn.CrossEntropyLoss()(outputs, targets) | |
def train_fn(data_loader, model, optimizer, device, scheduler): | |
model.train() | |
train_loss, train_acc = 0.0, 0.0 | |
for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)): | |
ids = d["ids"] | |
token_type_ids = d["token_type_ids"] | |
mask = d["mask"] | |
targets = d["targets"] | |
ids = ids.to(device, dtype=torch.long) | |
token_type_ids = token_type_ids.to(device, dtype=torch.long) | |
mask = mask.to(device, dtype=torch.long) | |
targets = targets.to(device, dtype=torch.long) | |
optimizer.zero_grad() | |
outputs = model( | |
ids=ids, | |
mask=mask, | |
token_type_ids=token_type_ids | |
) | |
loss = loss_fn(outputs, targets) | |
loss.backward() | |
optimizer.step() | |
scheduler.step() | |
train_loss += loss.item() | |
pred_labels = torch.argmax(outputs, dim=1) | |
# (pred_labels == targets).sum().item() | |
train_acc += categorical_accuracy(outputs, targets).item() | |
train_loss /= len(data_loader) | |
train_acc /= len(data_loader) | |
return train_loss, train_acc | |
def eval_fn(data_loader, model, device): | |
model.eval() | |
eval_loss, eval_acc = 0.0, 0.0 | |
fin_targets = [] | |
fin_outputs = [] | |
with torch.no_grad(): | |
for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)): | |
ids = d["ids"] | |
token_type_ids = d["token_type_ids"] | |
mask = d["mask"] | |
targets = d["targets"] | |
ids = ids.to(device, dtype=torch.long) | |
token_type_ids = token_type_ids.to(device, dtype=torch.long) | |
mask = mask.to(device, dtype=torch.long) | |
targets = targets.to(device, dtype=torch.long) | |
outputs = model( | |
ids=ids, | |
mask=mask, | |
token_type_ids=token_type_ids | |
) | |
loss = loss_fn(outputs, targets) | |
eval_loss += loss.item() | |
pred_labels = torch.argmax(outputs, axis=1) | |
# (pred_labels == targets).sum().item() | |
eval_acc += categorical_accuracy(outputs, targets).item() | |
fin_targets.extend(targets.cpu().detach().numpy().tolist()) | |
fin_outputs.extend(torch.argmax( | |
outputs, dim=1).cpu().detach().numpy().tolist()) | |
eval_loss /= len(data_loader) | |
eval_acc /= len(data_loader) | |
return fin_outputs, fin_targets, eval_loss, eval_acc | |
def predict_fn(data_loader, model, device, extract_features=False): | |
model.eval() | |
fin_outputs = [] | |
extracted_features =[] | |
with torch.no_grad(): | |
for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)): | |
ids = d["ids"] | |
token_type_ids = d["token_type_ids"] | |
mask = d["mask"] | |
# targets = d["targets"] | |
ids = ids.to(device, dtype=torch.long) | |
token_type_ids = token_type_ids.to(device, dtype=torch.long) | |
mask = mask.to(device, dtype=torch.long) | |
outputs = model( | |
ids=ids, | |
mask=mask, | |
token_type_ids=token_type_ids | |
) | |
if extract_features: | |
extracted_features.extend( model.extract_features( | |
ids=ids, | |
mask=mask, | |
token_type_ids=token_type_ids | |
).cpu().detach().numpy().tolist()) | |
fin_outputs.extend(torch.argmax( | |
outputs, dim=1).cpu().detach().numpy().tolist()) | |
return fin_outputs, extracted_features | |