thak123 commited on
Commit
db2fdad
1 Parent(s): 55edb3b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -25
app.py CHANGED
@@ -1,24 +1,26 @@
1
  import torch
2
- from utils import label_full_decoder
3
  import sys
4
- import dataset
5
- import engine
6
- from model import BERTBaseUncased
7
- from tokenizer import tokenizer
8
- import config
9
-
10
  import gradio as gr
11
 
12
  DEVICE = config.device
13
 
 
 
14
  # MODEL = BERTBaseUncased()
15
  # MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(DEVICE)))
16
  # MODEL.eval()
17
 
18
 
19
 
20
- T = tokenizer.TweetTokenizer(
21
- preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False)
22
 
23
  def preprocess(text):
24
  tokens = T.tokenize(text)
@@ -43,29 +45,32 @@ def preprocess(text):
43
 
44
  def sentence_prediction(sentence):
45
  sentence = preprocess(sentence)
46
- model_path = config.MODEL_PATH
47
 
48
- test_dataset = dataset.BERTDataset(
49
- review=[sentence],
50
- target=[0]
51
- )
52
 
53
- test_data_loader = torch.utils.data.DataLoader(
54
- test_dataset,
55
- batch_size=config.VALID_BATCH_SIZE,
56
- num_workers=3
57
- )
58
 
59
  # device = config.device
60
 
61
- model = BERTBaseUncased()
62
- # model.load_state_dict(torch.load(
63
- # model_path, map_location=torch.device(device)))
64
- model.to(device)
65
 
66
- outputs, [] = engine.predict_fn(test_data_loader, MODEL, device)
 
 
 
67
  print(outputs)
68
- return {"label":outputs[0]}
69
 
70
  if __name__ == "__main__":
71
 
 
1
  import torch
2
+ # from utils import label_full_decoder
3
  import sys
4
+ # import dataset
5
+ # import engine
6
+ # from model import BERTBaseUncased
7
+ # from tokenizer import tokenizer
8
+ # import config
9
+ from transformers import pipeline, AutoTokenizer, AutoModel
10
  import gradio as gr
11
 
12
  DEVICE = config.device
13
 
14
+ classifier = pipeline("sentiment-analysis",model="thak123/bert-emoji-latvian-twitter-classifier", tokenizer = "FFZG-cleopatra/bert-emoji-latvian-twitter")
15
+
16
  # MODEL = BERTBaseUncased()
17
  # MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(DEVICE)))
18
  # MODEL.eval()
19
 
20
 
21
 
22
+ # T = tokenizer.TweetTokenizer(
23
+ # preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False)
24
 
25
  def preprocess(text):
26
  tokens = T.tokenize(text)
 
45
 
46
  def sentence_prediction(sentence):
47
  sentence = preprocess(sentence)
48
+ # model_path = config.MODEL_PATH
49
 
50
+ # test_dataset = dataset.BERTDataset(
51
+ # review=[sentence],
52
+ # target=[0]
53
+ # )
54
 
55
+ # test_data_loader = torch.utils.data.DataLoader(
56
+ # test_dataset,
57
+ # batch_size=config.VALID_BATCH_SIZE,
58
+ # num_workers=3
59
+ # )
60
 
61
  # device = config.device
62
 
63
+ # model = BERTBaseUncased()
64
+ # # model.load_state_dict(torch.load(
65
+ # # model_path, map_location=torch.device(device)))
66
+ # model.to(device)
67
 
68
+ # outputs, [] = engine.predict_fn(test_data_loader, MODEL, device)
69
+
70
+ outputs = sentiment(input_text)
71
+
72
  print(outputs)
73
+ return outputs #{"label":outputs[0]}
74
 
75
  if __name__ == "__main__":
76