Update app.py
Browse files
app.py
CHANGED
@@ -11,8 +11,8 @@ import gradio as gr
|
|
11 |
|
12 |
# DEVICE = config.device
|
13 |
|
14 |
-
|
15 |
-
|
16 |
|
17 |
# classifier = pipeline("sentiment-analysis",
|
18 |
# model= model,
|
@@ -49,7 +49,7 @@ def preprocess(text):
|
|
49 |
|
50 |
|
51 |
def sentence_prediction(sentence):
|
52 |
-
sentence = preprocess(sentence)
|
53 |
# model_path = config.MODEL_PATH
|
54 |
|
55 |
# test_dataset = dataset.BERTDataset(
|
@@ -92,30 +92,30 @@ def sentence_prediction(sentence):
|
|
92 |
|
93 |
|
94 |
|
95 |
-
def greet(name):
|
96 |
-
|
97 |
|
98 |
-
demo = gr.Interface(
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
)
|
103 |
-
demo.launch()
|
104 |
|
105 |
|
106 |
-
import gradio as gr
|
107 |
|
108 |
-
from transformers import pipeline
|
109 |
|
110 |
-
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
|
111 |
|
112 |
def predict(text):
|
113 |
return pipe(text)[0]["translation_text"]
|
114 |
|
115 |
demo = gr.Interface(
|
116 |
-
fn=
|
117 |
inputs='text',
|
118 |
-
outputs='
|
119 |
)
|
120 |
|
121 |
demo.launch()
|
|
|
11 |
|
12 |
# DEVICE = config.device
|
13 |
|
14 |
+
model = AutoModel.from_pretrained("thak123/bert-emoji-latvian-twitter-classifier")
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("FFZG-cleopatra/bert-emoji-latvian-twitter")
|
16 |
|
17 |
# classifier = pipeline("sentiment-analysis",
|
18 |
# model= model,
|
|
|
49 |
|
50 |
|
51 |
def sentence_prediction(sentence):
|
52 |
+
# sentence = preprocess(sentence)
|
53 |
# model_path = config.MODEL_PATH
|
54 |
|
55 |
# test_dataset = dataset.BERTDataset(
|
|
|
92 |
|
93 |
|
94 |
|
95 |
+
# def greet(name):
|
96 |
+
# return "Hello " + name + "!"
|
97 |
|
98 |
+
# demo = gr.Interface(
|
99 |
+
# fn=greet,
|
100 |
+
# inputs=gr.Textbox(lines=2, placeholder="Name Here..."),
|
101 |
+
# outputs="text",
|
102 |
+
# )
|
103 |
+
# demo.launch()
|
104 |
|
105 |
|
106 |
+
# import gradio as gr
|
107 |
|
108 |
+
# from transformers import pipeline
|
109 |
|
110 |
+
# pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
|
111 |
|
112 |
def predict(text):
|
113 |
return pipe(text)[0]["translation_text"]
|
114 |
|
115 |
demo = gr.Interface(
|
116 |
+
fn=sentence_prediction,
|
117 |
inputs='text',
|
118 |
+
outputs='label',
|
119 |
)
|
120 |
|
121 |
demo.launch()
|