Create engine.py
Browse files
engine.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from tqdm import tqdm
|
4 |
+
from utils import categorical_accuracy
|
5 |
+
|
6 |
+
|
7 |
+
def loss_fn(outputs, targets):
|
8 |
+
return nn.CrossEntropyLoss()(outputs, targets)
|
9 |
+
|
10 |
+
|
11 |
+
def train_fn(data_loader, model, optimizer, device, scheduler):
|
12 |
+
model.train()
|
13 |
+
train_loss, train_acc = 0.0, 0.0
|
14 |
+
|
15 |
+
for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)):
|
16 |
+
ids = d["ids"]
|
17 |
+
token_type_ids = d["token_type_ids"]
|
18 |
+
mask = d["mask"]
|
19 |
+
targets = d["targets"]
|
20 |
+
|
21 |
+
ids = ids.to(device, dtype=torch.long)
|
22 |
+
token_type_ids = token_type_ids.to(device, dtype=torch.long)
|
23 |
+
mask = mask.to(device, dtype=torch.long)
|
24 |
+
targets = targets.to(device, dtype=torch.long)
|
25 |
+
|
26 |
+
optimizer.zero_grad()
|
27 |
+
outputs = model(
|
28 |
+
ids=ids,
|
29 |
+
mask=mask,
|
30 |
+
token_type_ids=token_type_ids
|
31 |
+
)
|
32 |
+
|
33 |
+
loss = loss_fn(outputs, targets)
|
34 |
+
loss.backward()
|
35 |
+
|
36 |
+
optimizer.step()
|
37 |
+
scheduler.step()
|
38 |
+
train_loss += loss.item()
|
39 |
+
pred_labels = torch.argmax(outputs, dim=1)
|
40 |
+
# (pred_labels == targets).sum().item()
|
41 |
+
train_acc += categorical_accuracy(outputs, targets).item()
|
42 |
+
|
43 |
+
train_loss /= len(data_loader)
|
44 |
+
train_acc /= len(data_loader)
|
45 |
+
return train_loss, train_acc
|
46 |
+
|
47 |
+
|
48 |
+
def eval_fn(data_loader, model, device):
|
49 |
+
model.eval()
|
50 |
+
eval_loss, eval_acc = 0.0, 0.0
|
51 |
+
fin_targets = []
|
52 |
+
fin_outputs = []
|
53 |
+
with torch.no_grad():
|
54 |
+
for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)):
|
55 |
+
ids = d["ids"]
|
56 |
+
token_type_ids = d["token_type_ids"]
|
57 |
+
mask = d["mask"]
|
58 |
+
targets = d["targets"]
|
59 |
+
|
60 |
+
ids = ids.to(device, dtype=torch.long)
|
61 |
+
token_type_ids = token_type_ids.to(device, dtype=torch.long)
|
62 |
+
mask = mask.to(device, dtype=torch.long)
|
63 |
+
targets = targets.to(device, dtype=torch.long)
|
64 |
+
|
65 |
+
outputs = model(
|
66 |
+
ids=ids,
|
67 |
+
mask=mask,
|
68 |
+
token_type_ids=token_type_ids
|
69 |
+
)
|
70 |
+
loss = loss_fn(outputs, targets)
|
71 |
+
eval_loss += loss.item()
|
72 |
+
pred_labels = torch.argmax(outputs, axis=1)
|
73 |
+
# (pred_labels == targets).sum().item()
|
74 |
+
eval_acc += categorical_accuracy(outputs, targets).item()
|
75 |
+
fin_targets.extend(targets.cpu().detach().numpy().tolist())
|
76 |
+
fin_outputs.extend(torch.argmax(
|
77 |
+
outputs, dim=1).cpu().detach().numpy().tolist())
|
78 |
+
eval_loss /= len(data_loader)
|
79 |
+
eval_acc /= len(data_loader)
|
80 |
+
return fin_outputs, fin_targets, eval_loss, eval_acc
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
def predict_fn(data_loader, model, device, extract_features=False):
|
85 |
+
model.eval()
|
86 |
+
|
87 |
+
fin_outputs = []
|
88 |
+
extracted_features =[]
|
89 |
+
with torch.no_grad():
|
90 |
+
for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)):
|
91 |
+
ids = d["ids"]
|
92 |
+
token_type_ids = d["token_type_ids"]
|
93 |
+
mask = d["mask"]
|
94 |
+
# targets = d["targets"]
|
95 |
+
|
96 |
+
ids = ids.to(device, dtype=torch.long)
|
97 |
+
token_type_ids = token_type_ids.to(device, dtype=torch.long)
|
98 |
+
mask = mask.to(device, dtype=torch.long)
|
99 |
+
|
100 |
+
outputs = model(
|
101 |
+
ids=ids,
|
102 |
+
mask=mask,
|
103 |
+
token_type_ids=token_type_ids
|
104 |
+
)
|
105 |
+
if extract_features:
|
106 |
+
extracted_features.extend( model.extract_features(
|
107 |
+
ids=ids,
|
108 |
+
mask=mask,
|
109 |
+
token_type_ids=token_type_ids
|
110 |
+
).cpu().detach().numpy().tolist())
|
111 |
+
|
112 |
+
fin_outputs.extend(torch.argmax(
|
113 |
+
outputs, dim=1).cpu().detach().numpy().tolist())
|
114 |
+
|
115 |
+
return fin_outputs, extracted_features
|
116 |
+
|