thak123's picture
Update app.py
481c6b3
raw
history blame
2.64 kB
import torch
from utils import label_full_decoder
import sys
import dataset
import engine
from model import BERTBaseUncased
# from tokenizer import tokenizer
import config
from transformers import pipeline, AutoTokenizer, AutoModel
import gradio as gr
# DEVICE = config.device
import requests
URL = "https://huggingface.co/FFZG-cleopatra/bert-emoji-latvian-twitter/blob/main/pytorch_model.bin"
response = requests.get(URL)
open("pytorch_model.bin", "wb").write(response.content)
model_path = "pytorch_model.bin"
# model = AutoModel.from_pretrained("thak123/bert-emoji-latvian-twitter-classifier")
# 7 EPOCH Version
BERT_PATH = "FFZG-cleopatra/bert-emoji-latvian-twitter"
tokenizer = transformers.BertTokenizer.from_pretrained(
BERT_PATH,
do_lower_case=True
)
#AutoTokenizer.from_pretrained("FFZG-cleopatra/bert-emoji-latvian-twitter")
# classifier = pipeline("sentiment-analysis",
# model= model,
# tokenizer = tokenizer)
# MODEL = BERTBaseUncased()
# MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(DEVICE)))
# MODEL.eval()
# T = tokenizer.TweetTokenizer(
# preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False)
def preprocess(text):
tokens = T.tokenize(text)
print(tokens, file=sys.stderr)
ptokens = []
for index, token in enumerate(tokens):
if "@" in token:
if index > 0:
# check if previous token was mention
if "@" in tokens[index-1]:
pass
else:
ptokens.append("mention_0")
else:
ptokens.append("mention_0")
else:
ptokens.append(token)
print(ptokens, file=sys.stderr)
return " ".join(ptokens)
def sentence_prediction(sentence):
# sentence = preprocess(sentence)
# model_path = config.MODEL_PATH
# test_dataset = dataset.BERTDataset(
# review=[sentence],
# target=[0]
# )
# test_data_loader = torch.utils.data.DataLoader(
# test_dataset,
# batch_size=config.VALID_BATCH_SIZE,
# num_workers=3
# )
# device = config.device
model = BERTBaseUncased()
model.load_state_dict(torch.load(
model_path, map_location=torch.device(device)))
model.to(device)
outputs, [] = engine.predict_fn(test_data_loader, MODEL, device)
outputs = classifier(sentence)
print(outputs)
return outputs #{"label":outputs[0]}
demo = gr.Interface(
fn=sentence_prediction,
inputs='text',
outputs='label',
)
demo.launch()