thak123's picture
Update app.py
272a9cc
raw
history blame
2.46 kB
import torch
# from utils import label_full_decoder
# import sys
# import dataset
# import engine
# from model import BERTBaseUncased
# from tokenizer import tokenizer
# import config
from transformers import pipeline, AutoTokenizer, AutoModel
import gradio as gr
# DEVICE = config.device
# model = AutoModel.from_pretrained("thak123/bert-emoji-latvian-twitter-classifier")
# tokenizer = AutoTokenizer.from_pretrained("FFZG-cleopatra/bert-emoji-latvian-twitter")
# classifier = pipeline("sentiment-analysis",
# model= model,
# tokenizer = tokenizer)
# MODEL = BERTBaseUncased()
# MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(DEVICE)))
# MODEL.eval()
# T = tokenizer.TweetTokenizer(
# preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False)
def preprocess(text):
tokens = T.tokenize(text)
print(tokens, file=sys.stderr)
ptokens = []
for index, token in enumerate(tokens):
if "@" in token:
if index > 0:
# check if previous token was mention
if "@" in tokens[index-1]:
pass
else:
ptokens.append("mention_0")
else:
ptokens.append("mention_0")
else:
ptokens.append(token)
print(ptokens, file=sys.stderr)
return " ".join(ptokens)
def sentence_prediction(sentence):
sentence = preprocess(sentence)
# model_path = config.MODEL_PATH
# test_dataset = dataset.BERTDataset(
# review=[sentence],
# target=[0]
# )
# test_data_loader = torch.utils.data.DataLoader(
# test_dataset,
# batch_size=config.VALID_BATCH_SIZE,
# num_workers=3
# )
# device = config.device
# model = BERTBaseUncased()
# # model.load_state_dict(torch.load(
# # model_path, map_location=torch.device(device)))
# model.to(device)
# outputs, [] = engine.predict_fn(test_data_loader, MODEL, device)
outputs = classifier(sentence)
print(outputs)
return outputs #{"label":outputs[0]}
# demo = gr.Interface(
# fn=sentence_prediction,
# inputs=gr.Textbox(placeholder="Enter a sentence here..."),
# outputs="label",
# interpretation="default",
# examples=[["!"]])
# demo.launch()
gr.Interface(fn=sentence_prediction,inputs="text",outputs="label").launch()