File size: 1,020 Bytes
e1cfebe 20d5db8 e1cfebe 20d5db8 e1cfebe 20d5db8 5ed46c0 e1cfebe 55edb3b e1cfebe 20d5db8 e1cfebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import config
import transformers
import torch.nn as nn
class BERTBaseUncased(nn.Module):
def __init__(self):
super(BERTBaseUncased, self).__init__()
self.bert = transformers.BertModel.from_pretrained(config.BERT_PATH)
# self.bert_drop = nn.Dropout(0.3)
# self.out = nn.Linear(768, 3)
# # self.out = nn.Linear(256, 3)
# nn.init.xavier_uniform_(self.out.weight)
print("Model")
def forward(self, ids, mask, token_type_ids):
output = self.bert(
ids,
attention_mask=mask,
token_type_ids=token_type_ids
)
# bo = self.bert_drop(o2)
# # bo = self.tanh(self.fc(bo)) # to be commented if original
# output = self.out(bo)
return output
def extract_features(self, ids, mask, token_type_ids):
_, o2 = self.bert(
ids,
attention_mask=mask,
token_type_ids=token_type_ids
)
bo = self.bert_drop(o2)
return bo |