|
import datasets |
|
import numpy as np |
|
import torch |
|
import transformers |
|
from config import epochs, batch_size, learning_rate, id2label |
|
from model import tokenizer, multitask_model |
|
from mtm import MultitaskTrainer, NLPDataCollator, DataLoaderWithTaskname |
|
import pandas as pd |
|
from datasets import Dataset, DatasetDict |
|
from data_predict import convert_to_stsb_features,convert_to_features |
|
import gradio as gr |
|
from huggingface_hub import hf_hub_download,snapshot_download |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
model_link = hf_hub_download(repo_id="FFZG-cleopatra/Croatian-Document-News-Sentiment-Classifier",filename = "pytorch_model.bin") |
|
|
|
multitask_model.load_state_dict(torch.load(model_link, map_location=device)) |
|
multitask_model.to(device) |
|
|
|
def predict_sentiment(sentence = "Volim ti"): |
|
|
|
document = DatasetDict({ |
|
|
|
|
|
"test": Dataset.from_dict({"content":[sentence]}) |
|
}) |
|
|
|
dataset_dict = { |
|
"document": document, |
|
} |
|
|
|
for task_name, dataset in dataset_dict.items(): |
|
print(task_name) |
|
print(dataset_dict[task_name]["test"][0]) |
|
print() |
|
|
|
|
|
convert_func_dict = { |
|
"document": convert_to_stsb_features, |
|
|
|
|
|
} |
|
|
|
features_dict = convert_to_features(dataset_dict, convert_func_dict) |
|
|
|
predictions = [] |
|
|
|
for _, batch in enumerate(features_dict["document"]['test']): |
|
for key, value in batch.items(): |
|
batch[key] = batch[key].to(device) |
|
|
|
task_model = multitask_model.get_model("document") |
|
classifier_output = task_model.forward( |
|
torch.unsqueeze(batch["input_ids"], 0), |
|
torch.unsqueeze(batch["attention_mask"], 0),) |
|
|
|
print(tokenizer.decode(batch["input_ids"],skip_special_tokens=True)) |
|
print("logits:",classifier_output.logits) |
|
prediction =torch.max(classifier_output.logits, axis=1) |
|
predictions.append(prediction.indices.item()) |
|
|
|
print("predictions:", predictions[0] , id2label[predictions[0]] ) |
|
return id2label[predictions[0]] |
|
|
|
|
|
interface = gr.Interface( |
|
fn=predict_sentiment, |
|
inputs='text', |
|
outputs=['label'], |
|
title='Croatian News Sentiment Analysis 1.0', |
|
description='Get the positive/neutral/negative sentiment for the given input.' |
|
) |
|
|
|
|
|
interface.launch(inline = False) |
|
|
|
|