File size: 9,047 Bytes
b69fb1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from os import mkdir
from os.path import exists, isdir
from pathlib import Path

# #! pip install streamlit
import streamlit as st

# +
# #! pip install datasets
# #! pip install powerlaw
# -

from data_measurements import dataset_statistics, dataset_utils
from data_measurements import streamlit_utils as st_utils

logs = logging.getLogger(__name__)
logs.setLevel(logging.WARNING)
logs.propagate = False

if not logs.handlers:

    Path('./log_files').mkdir(exist_ok=True)

    # Logging info to log file
    file = logging.FileHandler("./log_files/app.log")
    fileformat = logging.Formatter("%(asctime)s:%(message)s")
    file.setLevel(logging.INFO)
    file.setFormatter(fileformat)

    # Logging debug messages to stream
    stream = logging.StreamHandler()
    streamformat = logging.Formatter("[data_measurements_tool] %(message)s")
    stream.setLevel(logging.WARNING)
    stream.setFormatter(streamformat)

    logs.addHandler(file)
    logs.addHandler(stream)

st.set_page_config(
    page_title="Demo to showcase dataset metrics",
    page_icon="https://huggingface.co/front/assets/huggingface_logo.svg",
    layout="wide",
    initial_sidebar_state="auto",
)

# colorblind-friendly colors
colors = [
    "#332288",
    "#117733",
    "#882255",
    "#AA4499",
    "#CC6677",
    "#44AA99",
    "#DDCC77",
    "#88CCEE",
]

CACHE_DIR = dataset_utils.CACHE_DIR
# String names we are using (not coming from the stored dataset).
OUR_TEXT_FIELD = dataset_utils.OUR_TEXT_FIELD
OUR_LABEL_FIELD = dataset_utils.OUR_LABEL_FIELD
TOKENIZED_FIELD = dataset_utils.TOKENIZED_FIELD
EMBEDDING_FIELD = dataset_utils.EMBEDDING_FIELD
LENGTH_FIELD = dataset_utils.LENGTH_FIELD
# TODO: Allow users to specify this.
_MIN_VOCAB_COUNT = 10
_SHOW_TOP_N_WORDS = 10


@st.cache(
    hash_funcs={
        dataset_statistics.DatasetStatisticsCacheClass: lambda dstats: dstats.cache_path
    },
    allow_output_mutation=True,
)
def load_or_prepare(ds_args, show_embeddings, use_cache=False):
    """
    Takes the dataset arguments from the GUI and uses them to load a dataset from the Hub or, if
    a cache for those arguments is available, to load it from the cache.
    Args:
        ds_args (dict): the dataset arguments defined via the streamlit app GUI
        show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset
        use_cache (Bool) : whether the cache is used by default or not
    Returns:
        dstats: the computed dataset statistics (from the dataset_statistics class)
    """
    if not isdir(CACHE_DIR):
        logs.warning("Creating cache")
        # We need to preprocess everything.
        # This should eventually all go into a prepare_dataset CLI
        mkdir(CACHE_DIR)
    if use_cache:
        logs.warning("Using cache")
    dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args, use_cache=use_cache)
    logs.warning("Loading dataset")
    dstats.load_or_prepare_dataset()
    if show_embeddings:
        logs.warning("Loading Embeddings")
        dstats.load_or_prepare_embeddings()
    logs.warning("Loading nPMI")
    try:
        dstats.load_or_prepare_npmi()
    except:
        logs.warning("Missing a cache for npmi")
    return dstats

@st.cache(
    hash_funcs={
        dataset_statistics.DatasetStatisticsCacheClass: lambda dstats: dstats.cache_path
    },
    allow_output_mutation=True,
)
def load_or_prepare_widgets(ds_args, show_embeddings, use_cache=False):
    """
    Loader specifically for the widgets used in the app.
    Args:
        ds_args:
        show_embeddings:
        use_cache:

    Returns:

    """

    if use_cache:
        logs.warning("Using cache")
    if True:
    #try:
        dstats = dataset_statistics.DatasetStatisticsCacheClass(CACHE_DIR, **ds_args, use_cache=use_cache)
        # Don't recalculate; we're live
        dstats.set_deployment(True)
        # checks whether the cache_dir exists in deployment mode
        # creates cache_dir if not and if in development mode
        cache_dir_exists = dstats.check_cache_dir()
    #except:
    #    logs.warning("We're screwed")
    if cache_dir_exists:
        try:
            # We need to have the text_dset loaded for further load_or_prepare
            dstats.load_or_prepare_dataset()
        except:
            logs.warning("Missing a cache for load or prepare dataset")
        try:
            # Header widget
            dstats.load_or_prepare_dset_peek()
        except:
            logs.warning("Missing a cache for dset peek")
        if show_embeddings:
            try:
                # Embeddings widget
                dstats.load_or_prepare_embeddings()
            except:
                logs.warning("Missing a cache for embeddings")
        try:
            dstats.load_or_prepare_text_duplicates()
        except:
            logs.warning("Missing a cache for text duplicates")
        try:
            dstats.load_or_prepare_npmi()
        except:
            logs.warning("Missing a cache for npmi")
    return dstats, cache_dir_exists

def show_column(dstats, ds_name_to_dict, show_embeddings, column_id):
    """
    Function for displaying the elements in the right column of the streamlit app.
    Args:
        ds_name_to_dict (dict): the dataset name and options in dictionary form
        show_embeddings (Bool): whether embeddings should we loaded and displayed for this dataset
        column_id (str): what column of the dataset the analysis is done on
    Returns:
        The function displays the information using the functions defined in the st_utils class.
    """
    # Note that at this point we assume we can use cache; default value is True.
    # start showing stuff
    title_str = f"### Showing{column_id}: {dstats.dset_name} - {dstats.dset_config} - {dstats.split_name} - {'-'.join(dstats.text_field)}"
    st.markdown(title_str)
    # Uses an interaction; handled a bit differently than other widgets.
    logs.info("showing npmi widget")
    st_utils.npmi_widget(dstats.npmi_stats, _MIN_VOCAB_COUNT, column_id)
    if show_embeddings:
        st_utils.expander_text_embeddings(
            dstats.text_dset,
            dstats.fig_tree,
            dstats.node_list,
            dstats.embeddings,
            OUR_TEXT_FIELD,
            column_id,
        )


def main():
    """ Sidebar description and selection """
    ds_name_to_dict = dataset_utils.get_dataset_info_dicts()
    st.title("Data Measurements Tool")
    # Get the sidebar details
    st_utils.sidebar_header()
    # Set up naming, configs, and cache path.
    compare_mode = st.sidebar.checkbox("Comparison mode")

    # When not doing new development, use the cache.
    use_cache = True
    show_embeddings = st.sidebar.checkbox("Show text clusters")
    # List of datasets for which embeddings are hard to compute:

    if compare_mode:
        logs.warning("Using Comparison Mode")
        dataset_args_left = st_utils.sidebar_selection(ds_name_to_dict, " A")
        dataset_args_right = st_utils.sidebar_selection(ds_name_to_dict, " B")
        left_col, _, right_col = st.columns([10, 1, 10])
        dstats_left, cache_exists_left = load_or_prepare_widgets(
            dataset_args_left, show_embeddings, use_cache=use_cache
        )
        with left_col:
            if cache_exists_left:
                show_column(dstats_left, ds_name_to_dict, show_embeddings, " A")
            else:
                st.markdown("### Missing pre-computed data measures!")
                st.write(dataset_args_left)
        dstats_right, cache_exists_right = load_or_prepare_widgets(
            dataset_args_right, show_embeddings, use_cache=use_cache
        )
        with right_col:
            if cache_exists_right:
                show_column(dstats_right, ds_name_to_dict, show_embeddings, " B")
            else:
                st.markdown("### Missing pre-computed data measures!")
                st.write(dataset_args_right)
    else:
        logs.warning("Using Single Dataset Mode")
        dataset_args = st_utils.sidebar_selection(ds_name_to_dict, "")
        dstats, cache_exists = load_or_prepare_widgets(dataset_args, show_embeddings, use_cache=use_cache)
        if cache_exists:
            show_column(dstats, ds_name_to_dict, show_embeddings, "")
        else:
            st.markdown("### Missing pre-computed data measures!")
            st.write(dataset_args)


if __name__ == "__main__":
    main()