File size: 20,213 Bytes
b69fb1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from os.path import exists
from os.path import join as pjoin

import plotly.graph_objects as go
import torch
import transformers
from datasets import load_from_disk
from plotly.io import read_json
from tqdm import tqdm

from .dataset_utils import EMBEDDING_FIELD


def sentence_mean_pooling(model_output, attention_mask):
    """Mean pooling of token embeddings for a sentence."""
    token_embeddings = model_output[
        0
    ]  # First element of model_output contains all token embeddings
    input_mask_expanded = (
        attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    )
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
        input_mask_expanded.sum(1), min=1e-9
    )


class Embeddings:
    def __init__(
        self,
        dstats=None,
        text_dset=None,
        text_field_name="text",
        cache_path="",
        use_cache=False,
    ):
        """Item embeddings and clustering"""
        self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
        self.model_name = "sentence-transformers/all-mpnet-base-v2"
        self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
        self.model = transformers.AutoModel.from_pretrained(self.model_name).to(
            self.device
        )
        self.text_dset = text_dset if dstats is None else dstats.text_dset
        self.text_field_name = (
            text_field_name if dstats is None else dstats.our_text_field
        )
        self.cache_path = cache_path if dstats is None else dstats.cache_path
        self.embeddings_dset_fid = pjoin(self.cache_path, "embeddings_dset")
        self.embeddings_dset = None
        self.node_list_fid = pjoin(self.cache_path, "node_list.th")
        self.node_list = None
        self.nid_map = None
        self.fig_tree_fid = pjoin(self.cache_path, "node_figure.json")
        self.fig_tree = None
        self.cached_clusters = {}
        self.use_cache = use_cache

    def compute_sentence_embeddings(self, sentences):
        """
        Takes a list of sentences and computes their embeddings
        using self.tokenizer and self.model (with output dimension D)
        followed by mean pooling of the token representations and normalization
        Args:
            sentences ([string]): list of N input sentences
        Returns:
            torch.Tensor: sentence embeddings, dimension NxD
        """
        batch = self.tokenizer(
            sentences, padding=True, truncation=True, return_tensors="pt"
        )
        batch = {k: v.to(self.device) for k, v in batch.items()}
        with torch.no_grad():
            model_output = self.model(**batch)
            sentence_embeds = sentence_mean_pooling(
                model_output, batch["attention_mask"]
            )
            sentence_embeds /= sentence_embeds.norm(dim=-1, keepdim=True)
            return sentence_embeds

    def make_embeddings(self):
        """
        Batch computes the embeddings of the Dataset self.text_dset,
        using the field self.text_field_name as input.
        Returns:
            Dataset: HF dataset object with a single EMBEDDING_FIELD field
                corresponding to the embeddings (list of floats)
        """

        def batch_embed_sentences(sentences):
            return {
                EMBEDDING_FIELD: [
                    embed.tolist()
                    for embed in self.compute_sentence_embeddings(
                        sentences[self.text_field_name]
                    )
                ]
            }

        self.embeddings_dset = self.text_dset.map(
            batch_embed_sentences,
            batched=True,
            batch_size=32,
            remove_columns=[self.text_field_name],
        )

        return self.embeddings_dset

    def make_text_embeddings(self):
        """Load embeddings dataset from cache or compute it."""
        if self.use_cache and exists(self.embeddings_dset_fid):
            self.embeddings_dset = load_from_disk(self.embeddings_dset_fid)
        else:
            self.embeddings_dset = self.make_embeddings()
            self.embeddings_dset.save_to_disk(self.embeddings_dset_fid)

    def make_hierarchical_clustering(
        self,
        batch_size=1000,
        approx_neighbors=1000,
        min_cluster_size=10,
    ):
        if self.use_cache and exists(self.node_list_fid):
            self.node_list, self.nid_map = torch.load(self.node_list_fid)
        else:
            self.make_text_embeddings()
            embeddings = torch.Tensor(self.embeddings_dset[EMBEDDING_FIELD])
            self.node_list = fast_cluster(
                embeddings, batch_size, approx_neighbors, min_cluster_size
            )
            self.nid_map = dict(
                [(node["nid"], nid) for nid, node in enumerate(self.node_list)]
            )
            torch.save((self.node_list, self.nid_map), self.node_list_fid)
        print(exists(self.fig_tree_fid), self.fig_tree_fid)
        if self.use_cache and exists(self.fig_tree_fid):
            self.fig_tree = read_json(self.fig_tree_fid)
        else:
            self.fig_tree = make_tree_plot(
                self.node_list, self.nid_map, self.text_dset, self.text_field_name
            )
            self.fig_tree.write_json(self.fig_tree_fid)

    def find_cluster_beam(self, sentence, beam_size=20):
        """
        This function finds the `beam_size` leaf clusters that are closest to the
        proposed sentence and returns the full path from the root to the cluster
        along with the dot product between the sentence embedding and the
        cluster centroid
        Args:
            sentence (string): input sentence for which to find clusters
            beam_size (int): this is a beam size algorithm to explore the tree
        Returns:
            [([int], float)]: list of (path_from_root, score) sorted by score
        """
        embed = self.compute_sentence_embeddings([sentence])[0].to("cpu")
        active_paths = [([0], torch.dot(embed, self.node_list[0]["centroid"]).item())]
        finished_paths = []
        children_ids_list = [
            [
                self.nid_map[nid]
                for nid in self.node_list[path[-1]]["children_ids"]
                if nid in self.nid_map
            ]
            for path, score in active_paths
        ]
        while len(active_paths) > 0:
            next_ids = sorted(
                [
                    (
                        beam_id,
                        nid,
                        torch.dot(embed, self.node_list[nid]["centroid"]).item(),
                    )
                    for beam_id, children_ids in enumerate(children_ids_list)
                    for nid in children_ids
                ],
                key=lambda x: x[2],
                reverse=True,
            )[:beam_size]
            paths = [
                (active_paths[beam_id][0] + [next_id], score)
                for beam_id, next_id, score in next_ids
            ]
            active_paths = []
            for path, score in paths:
                if (
                    len(
                        [
                            nid
                            for nid in self.node_list[path[-1]]["children_ids"]
                            if nid in self.nid_map
                        ]
                    )
                    > 0
                ):
                    active_paths += [(path, score)]
                else:
                    finished_paths += [(path, score)]
            children_ids_list = [
                [
                    self.nid_map[nid]
                    for nid in self.node_list[path[-1]]["children_ids"]
                    if nid in self.nid_map
                ]
                for path, score in active_paths
            ]
        return sorted(
            finished_paths,
            key=lambda x: x[-1],
            reverse=True,
        )[:beam_size]


def prepare_merges(embeddings, batch_size=1000, approx_neighbors=1000, low_thres=0.5):
    """
    Prepares an initial list of merges for hierarchical
    clustering. First compute the `approx_neighbors` nearest neighbors,
    then propose a merge for any two points that are closer than `low_thres`

    Note that if a point has more than `approx_neighbors` neighbors
    closer than `low_thres`, this approach will miss some of those merges

    Args:
        embeddings (toch.Tensor): Tensor of sentence embeddings - dimension NxD
        batch_size (int): compute nearest neighbors of `batch_size` points at a time
        approx_neighbors (int): only keep `approx_neighbors` nearest neighbors of a point
        low_thres (float): only return merges where the dot product is greater than `low_thres`
    Returns:
        torch.LongTensor: proposed merges ([i, j] with i>j) - dimension: Mx2
        torch.Tensor: merge scores - dimension M
    """
    top_idx_pre = torch.cat(
        [torch.LongTensor(range(embeddings.shape[0]))[:, None]] * batch_size, dim=1
    )
    top_val_all = torch.Tensor(0, approx_neighbors)
    top_idx_all = torch.LongTensor(0, approx_neighbors)
    n_batches = math.ceil(len(embeddings) / batch_size)
    for b in tqdm(range(n_batches)):
        # TODO: batch across second dimension
        cos_scores = torch.mm(
            embeddings[b * batch_size : (b + 1) * batch_size], embeddings.t()
        )
        for i in range(cos_scores.shape[0]):
            cos_scores[i, (b * batch_size) + i :] = -1
        top_val_large, top_idx_large = cos_scores.topk(
            k=approx_neighbors, dim=-1, largest=True
        )
        top_val_all = torch.cat([top_val_all, top_val_large], dim=0)
        top_idx_all = torch.cat([top_idx_all, top_idx_large], dim=0)
        max_neighbor_dist = top_val_large[:, -1].max().item()
        if max_neighbor_dist > low_thres:
            print(
                f"WARNING: with the current set of neireast neighbor, the farthest is {max_neighbor_dist}"
            )

    all_merges = torch.cat(
        [
            top_idx_pre[top_val_all > low_thres][:, None],
            top_idx_all[top_val_all > low_thres][:, None],
        ],
        dim=1,
    )
    all_merge_scores = top_val_all[top_val_all > low_thres]

    return (all_merges, all_merge_scores)


def merge_nodes(nodes, current_thres, previous_thres, all_merges, all_merge_scores):
    """
    Merge all nodes if the max dot product between any of their descendants
    is greater than current_thres.

    Args:
        nodes ([dict]): list of dicts representing the current set of nodes
        current_thres (float): merge all nodes closer than current_thres
        previous_thres (float): nodes closer than previous_thres are already merged
        all_merges (torch.LongTensor): proposed merges ([i, j] with i>j) - dimension: Mx2
        all_merge_scores (torch.Tensor): merge scores - dimension M
    Returns:
        [dict]: extended list with the newly created internal nodes
    """
    merge_ids = (all_merge_scores <= previous_thres) * (
        all_merge_scores > current_thres
    )
    if merge_ids.sum().item() > 0:
        merges = all_merges[merge_ids]
        for a, b in merges.tolist():
            node_a = nodes[a]
            while node_a["parent_id"] != -1:
                node_a = nodes[node_a["parent_id"]]
            node_b = nodes[b]
            while node_b["parent_id"] != -1:
                node_b = nodes[node_b["parent_id"]]
            if node_a["nid"] == node_b["nid"]:
                continue
            else:
                # merge if threshold allows
                if (node_a["depth"] + node_b["depth"]) > 0 and min(
                    node_a["merge_threshold"], node_b["merge_threshold"]
                ) == current_thres:
                    merge_to = None
                    merge_from = None
                    if node_a["nid"] < node_b["nid"]:
                        merge_from = node_a
                        merge_to = node_b
                    if node_a["nid"] > node_b["nid"]:
                        merge_from = node_b
                        merge_to = node_a
                    merge_to["depth"] = max(merge_to["depth"], merge_from["depth"])
                    merge_to["weight"] += merge_from["weight"]
                    merge_to["children_ids"] += (
                        merge_from["children_ids"]
                        if merge_from["depth"] > 0
                        else [merge_from["nid"]]
                    )
                    for cid in merge_from["children_ids"]:
                        nodes[cid]["parent_id"] = merge_to["nid"]
                    merge_from["parent_id"] = merge_to["nid"]
                # else new node
                else:
                    new_nid = len(nodes)
                    new_node = {
                        "nid": new_nid,
                        "parent_id": -1,
                        "depth": max(node_a["depth"], node_b["depth"]) + 1,
                        "weight": node_a["weight"] + node_b["weight"],
                        "children": [],
                        "children_ids": [node_a["nid"], node_b["nid"]],
                        "example_ids": [],
                        "merge_threshold": current_thres,
                    }
                    node_a["parent_id"] = new_nid
                    node_b["parent_id"] = new_nid
                    nodes += [new_node]
    return nodes


def finalize_node(node, nodes, min_cluster_size):
    """Post-process nodes to sort children by descending weight,
    get full list of leaves in the sub-tree, and direct links
    to the cildren nodes, then recurses to all children.

    Nodes with fewer than `min_cluster_size` descendants are collapsed
    into a single leaf.
    """
    node["children"] = sorted(
        [
            finalize_node(nodes[cid], nodes, min_cluster_size)
            for cid in node["children_ids"]
        ],
        key=lambda x: x["weight"],
        reverse=True,
    )
    if node["depth"] > 0:
        node["example_ids"] = [
            eid for child in node["children"] for eid in child["example_ids"]
        ]
    node["children"] = [
        child for child in node["children"] if child["weight"] >= min_cluster_size
    ]
    assert node["weight"] == len(node["example_ids"]), print(node)
    return node


def fast_cluster(
    embeddings,
    batch_size=1000,
    approx_neighbors=1000,
    min_cluster_size=10,
    low_thres=0.5,
):
    """
    Computes an approximate hierarchical clustering based on example
    embeddings. The join criterion is min clustering, i.e. two clusters
    are joined if any pair of their descendants are closer than a threshold

    The approximate comes from the fact that only the `approx_neighbors` nearest
    neighbors of an example are considered for merges
    """
    batch_size = min(embeddings.shape[0], batch_size)
    all_merges, all_merge_scores = prepare_merges(
        embeddings, batch_size, approx_neighbors, low_thres
    )
    # prepare leaves
    nodes = [
        {
            "nid": nid,
            "parent_id": -1,
            "depth": 0,
            "weight": 1,
            "children": [],
            "children_ids": [],
            "example_ids": [nid],
            "merge_threshold": 1.0,
        }
        for nid in range(embeddings.shape[0])
    ]
    # one level per threshold range
    for i in range(10):
        p_thres = 1 - i * 0.05
        c_thres = 0.95 - i * 0.05
        nodes = merge_nodes(nodes, c_thres, p_thres, all_merges, all_merge_scores)
    # make root
    root_children = [
        node
        for node in nodes
        if node["parent_id"] == -1 and node["weight"] >= min_cluster_size
    ]
    root = {
        "nid": len(nodes),
        "parent_id": -1,
        "depth": max([node["depth"] for node in root_children]) + 1,
        "weight": sum([node["weight"] for node in root_children]),
        "children": [],
        "children_ids": [node["nid"] for node in root_children],
        "example_ids": [],
        "merge_threshold": -1.0,
    }
    nodes += [root]
    for node in root_children:
        node["parent_id"] = root["nid"]
    # finalize tree
    tree = finalize_node(root, nodes, min_cluster_size)
    node_list = []

    def rec_map_nodes(node, node_list):
        node_list += [node]
        for child in node["children"]:
            rec_map_nodes(child, node_list)

    rec_map_nodes(tree, node_list)
    # get centroids and distances
    for node in node_list:
        node_embeds = embeddings[node["example_ids"]]
        node["centroid"] = node_embeds.sum(dim=0)
        node["centroid"] /= node["centroid"].norm()
        node["centroid_dot_prods"] = torch.mv(node_embeds, node["centroid"])
        node["sorted_examples_centroid"] = sorted(
            [
                (eid, edp.item())
                for eid, edp in zip(node["example_ids"], node["centroid_dot_prods"])
            ],
            key=lambda x: x[1],
            reverse=True,
        )
    return node_list


def make_tree_plot(node_list, nid_map, text_dset, text_field_name):
    """
    Makes a graphical representation of the tree encoded
    in node-list. The hover label for each node shows the number
    of descendants and the 5 examples that are closest to the centroid
    """
    for nid, node in enumerate(node_list):
        # get list of
        node_examples = {}
        for sid, score in node["sorted_examples_centroid"]:
            node_examples[text_dset[sid][text_field_name]] = score
            if len(node_examples) >= 5:
                break
        node["label"] = node.get(
            "label",
            f"{nid:2d} - {node['weight']:5d} items <br>"
            + "<br>".join(
                [
                    f" {score:.2f} > {txt[:64]}" + ("..." if len(txt) >= 63 else "")
                    for txt, score in node_examples.items()
                ]
            ),
        )

    # make plot nodes
    labels = [node["label"] for node in node_list]

    root = node_list[0]
    root["X"] = 0
    root["Y"] = 0

    def rec_make_coordinates(node):
        total_weight = 0
        add_weight = len(node["example_ids"]) - sum(
            [child["weight"] for child in node["children"]]
        )
        for child in node["children"]:
            child["X"] = node["X"] + total_weight
            child["Y"] = node["Y"] - 1
            total_weight += child["weight"] + add_weight / len(node["children"])
            rec_make_coordinates(child)

    rec_make_coordinates(root)

    E = []  # list of edges
    Xn = []
    Yn = []
    Xe = []
    Ye = []
    for nid, node in enumerate(node_list):
        Xn += [node["X"]]
        Yn += [node["Y"]]
        for child in node["children"]:
            E += [(nid, nid_map[child["nid"]])]
            Xe += [node["X"], child["X"], None]
            Ye += [node["Y"], child["Y"], None]

    # make figure
    fig = go.Figure()
    fig.add_trace(
        go.Scatter(
            x=Xe,
            y=Ye,
            mode="lines",
            line=dict(color="rgb(210,210,210)", width=1),
            hoverinfo="none",
        )
    )
    fig.add_trace(
        go.Scatter(
            x=Xn,
            y=Yn,
            mode="markers",
            name="nodes",
            marker=dict(
                symbol="circle-dot",
                size=18,
                color="#6175c1",
                line=dict(color="rgb(50,50,50)", width=1)
                # '#DB4551',
            ),
            text=labels,
            hoverinfo="text",
            opacity=0.8,
        )
    )
    return fig