Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
import librosa | |
local_model_name = "wav2vec2_model_pipeline" | |
speech_recognizer = pipeline("automatic-speech-recognition", model = local_model_name) | |
def greet_and_transcribe(name, intensity, input_audio): | |
input_audio_rs = librosa.resample( | |
input_audio[1].astype(float), | |
orig_sr=input_audio[0], | |
target_sr=speech_recognizer.feature_extractor.sampling_rate) | |
transcribed_audio = speech_recognizer(input_audio_rs)["text"] | |
return "Hello, " + name + "!" * int(intensity), transcribed_audio | |
demo = gr.Interface( | |
title="A simple audio transcribing model", | |
description="This is an application to test gradio functionalities", | |
fn=greet_and_transcribe, | |
inputs=[ | |
gr.Text(placeholder="input your name here"), | |
gr.Slider(minimum=1, maximum=5, value=3), | |
gr.Audio()], | |
outputs=[gr.Text(label="Greeting"), gr.Text(label="Transcribed output")], | |
cache_examples="lazy", | |
allow_flagging="auto", | |
examples=[["Jacob", 3, "example_audio/conference.wav"]] | |
# article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" | |
) | |
demo.launch(share=True) | |