abhinav-joshi
commited on
Commit
β’
a92fba7
1
Parent(s):
679c7e6
add tasks
Browse files- app.py +27 -19
- src/about.py +11 -2
app.py
CHANGED
@@ -24,7 +24,7 @@ from src.display.utils import (
|
|
24 |
ModelType,
|
25 |
fields,
|
26 |
WeightType,
|
27 |
-
Precision
|
28 |
)
|
29 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
@@ -34,17 +34,28 @@ from src.submission.submit import add_new_eval
|
|
34 |
def restart_space():
|
35 |
API.restart_space(repo_id=REPO_ID)
|
36 |
|
|
|
37 |
try:
|
38 |
print(EVAL_REQUESTS_PATH)
|
39 |
snapshot_download(
|
40 |
-
repo_id=QUEUE_REPO,
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
42 |
except Exception:
|
43 |
restart_space()
|
44 |
try:
|
45 |
print(EVAL_RESULTS_PATH)
|
46 |
snapshot_download(
|
47 |
-
repo_id=RESULTS_REPO,
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
except Exception:
|
50 |
restart_space()
|
@@ -86,9 +97,7 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
86 |
AutoEvalColumn.model.name,
|
87 |
]
|
88 |
# We use COLS to maintain sorting
|
89 |
-
filtered_df = df[
|
90 |
-
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
91 |
-
]
|
92 |
return filtered_df
|
93 |
|
94 |
|
@@ -138,7 +147,7 @@ with demo:
|
|
138 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
139 |
|
140 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
141 |
-
with gr.TabItem("π
|
142 |
with gr.Row():
|
143 |
with gr.Column():
|
144 |
with gr.Row():
|
@@ -149,11 +158,7 @@ with demo:
|
|
149 |
)
|
150 |
with gr.Row():
|
151 |
shown_columns = gr.CheckboxGroup(
|
152 |
-
choices=[
|
153 |
-
c.name
|
154 |
-
for c in fields(AutoEvalColumn)
|
155 |
-
if not c.hidden and not c.never_hidden
|
156 |
-
],
|
157 |
value=[
|
158 |
c.name
|
159 |
for c in fields(AutoEvalColumn)
|
@@ -168,7 +173,7 @@ with demo:
|
|
168 |
value=False, label="Show gated/private/deleted models", interactive=True
|
169 |
)
|
170 |
with gr.Column(min_width=320):
|
171 |
-
#with gr.Box(elem_id="box-filter"):
|
172 |
filter_columns_type = gr.CheckboxGroup(
|
173 |
label="Model types",
|
174 |
choices=[t.to_str() for t in ModelType],
|
@@ -192,10 +197,7 @@ with demo:
|
|
192 |
)
|
193 |
|
194 |
leaderboard_table = gr.components.Dataframe(
|
195 |
-
value=leaderboard_df[
|
196 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
197 |
-
+ shown_columns.value
|
198 |
-
],
|
199 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
200 |
datatype=TYPES,
|
201 |
elem_id="leaderboard-table",
|
@@ -223,7 +225,13 @@ with demo:
|
|
223 |
],
|
224 |
leaderboard_table,
|
225 |
)
|
226 |
-
for selector in [
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
selector.change(
|
228 |
update_table,
|
229 |
[
|
@@ -342,4 +350,4 @@ with demo:
|
|
342 |
scheduler = BackgroundScheduler()
|
343 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
344 |
scheduler.start()
|
345 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
24 |
ModelType,
|
25 |
fields,
|
26 |
WeightType,
|
27 |
+
Precision,
|
28 |
)
|
29 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
34 |
def restart_space():
|
35 |
API.restart_space(repo_id=REPO_ID)
|
36 |
|
37 |
+
|
38 |
try:
|
39 |
print(EVAL_REQUESTS_PATH)
|
40 |
snapshot_download(
|
41 |
+
repo_id=QUEUE_REPO,
|
42 |
+
local_dir=EVAL_REQUESTS_PATH,
|
43 |
+
repo_type="dataset",
|
44 |
+
tqdm_class=None,
|
45 |
+
etag_timeout=30,
|
46 |
+
token=TOKEN,
|
47 |
)
|
48 |
except Exception:
|
49 |
restart_space()
|
50 |
try:
|
51 |
print(EVAL_RESULTS_PATH)
|
52 |
snapshot_download(
|
53 |
+
repo_id=RESULTS_REPO,
|
54 |
+
local_dir=EVAL_RESULTS_PATH,
|
55 |
+
repo_type="dataset",
|
56 |
+
tqdm_class=None,
|
57 |
+
etag_timeout=30,
|
58 |
+
token=TOKEN,
|
59 |
)
|
60 |
except Exception:
|
61 |
restart_space()
|
|
|
97 |
AutoEvalColumn.model.name,
|
98 |
]
|
99 |
# We use COLS to maintain sorting
|
100 |
+
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns]]
|
|
|
|
|
101 |
return filtered_df
|
102 |
|
103 |
|
|
|
147 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
148 |
|
149 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
150 |
+
with gr.TabItem("π
IL-TUR Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
151 |
with gr.Row():
|
152 |
with gr.Column():
|
153 |
with gr.Row():
|
|
|
158 |
)
|
159 |
with gr.Row():
|
160 |
shown_columns = gr.CheckboxGroup(
|
161 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
|
|
|
|
|
|
|
|
|
162 |
value=[
|
163 |
c.name
|
164 |
for c in fields(AutoEvalColumn)
|
|
|
173 |
value=False, label="Show gated/private/deleted models", interactive=True
|
174 |
)
|
175 |
with gr.Column(min_width=320):
|
176 |
+
# with gr.Box(elem_id="box-filter"):
|
177 |
filter_columns_type = gr.CheckboxGroup(
|
178 |
label="Model types",
|
179 |
choices=[t.to_str() for t in ModelType],
|
|
|
197 |
)
|
198 |
|
199 |
leaderboard_table = gr.components.Dataframe(
|
200 |
+
value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
|
|
|
|
|
|
201 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
202 |
datatype=TYPES,
|
203 |
elem_id="leaderboard-table",
|
|
|
225 |
],
|
226 |
leaderboard_table,
|
227 |
)
|
228 |
+
for selector in [
|
229 |
+
shown_columns,
|
230 |
+
filter_columns_type,
|
231 |
+
filter_columns_precision,
|
232 |
+
filter_columns_size,
|
233 |
+
deleted_models_visibility,
|
234 |
+
]:
|
235 |
selector.change(
|
236 |
update_table,
|
237 |
[
|
|
|
350 |
scheduler = BackgroundScheduler()
|
351 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
352 |
scheduler.start()
|
353 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/about.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
|
|
4 |
@dataclass
|
5 |
class Task:
|
6 |
benchmark: str
|
@@ -11,14 +12,22 @@ class Task:
|
|
11 |
# Select your tasks here
|
12 |
# ---------------------------------------------------
|
13 |
class Tasks(Enum):
|
14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
task0 = Task("anli_r1", "acc", "Legal Named Entity Recognition (L-NER)")
|
16 |
task1 = Task("logiqa", "acc_norm", "Rhetorical Role Prediction (RR)")
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
NUM_FEWSHOT = 0 # Change with your few shot
|
19 |
# ---------------------------------------------------
|
20 |
|
21 |
|
|
|
|
|
|
|
22 |
|
23 |
# Your leaderboard name
|
24 |
TITLE = """<h1 align="center" id="space-title">IL-TUR leaderboard</h1>"""
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
4 |
+
|
5 |
@dataclass
|
6 |
class Task:
|
7 |
benchmark: str
|
|
|
12 |
# Select your tasks here
|
13 |
# ---------------------------------------------------
|
14 |
class Tasks(Enum):
|
15 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
16 |
task0 = Task("anli_r1", "acc", "Legal Named Entity Recognition (L-NER)")
|
17 |
task1 = Task("logiqa", "acc_norm", "Rhetorical Role Prediction (RR)")
|
18 |
+
task2 = Task("logiqa", "acc_norm", "Court Judgment Prediction and Explanation (CJPE)")
|
19 |
+
task3 = Task("logiqa", "acc_norm", "Bail Prediction (BAIL)")
|
20 |
+
task4 = Task("logiqa", "acc_norm", "Legal Statute Identification (LSI)")
|
21 |
+
task5 = Task("logiqa", "acc_norm", "Prior Case Retrieval (PCR)")
|
22 |
+
task6 = Task("logiqa", "acc_norm", "Summarization (SUMM)")
|
23 |
+
|
24 |
|
|
|
25 |
# ---------------------------------------------------
|
26 |
|
27 |
|
28 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
29 |
+
# ---------------------------------------------------
|
30 |
+
|
31 |
|
32 |
# Your leaderboard name
|
33 |
TITLE = """<h1 align="center" id="space-title">IL-TUR leaderboard</h1>"""
|