|
import json |
|
import re |
|
from collections import defaultdict |
|
|
|
import evaluate |
|
import nltk |
|
import numpy as np |
|
|
|
from nervaluate import Evaluator |
|
|
|
from sacrebleu.metrics import BLEU, CHRF |
|
from sklearn.metrics import f1_score |
|
from tqdm import tqdm |
|
from transformers import AutoTokenizer |
|
import rouge |
|
import bert_score |
|
import string |
|
|
|
|
|
def load_json(file_path): |
|
with open(file_path, "r") as f: |
|
return json.load(f) |
|
|
|
|
|
def get_micro_at_k(gold, pred, k): |
|
gold_set = set(gold) |
|
pred_set = set(pred[:k]) |
|
return len(gold_set & pred_set), len(gold_set), len(pred_set) |
|
|
|
|
|
def evaluate_bail(gold_data, pred_data): |
|
gold_labels = [] |
|
pred_labels = [] |
|
for id, label in gold_data.items(): |
|
gold_labels.append(label) |
|
pred_labels.append(pred_data.get(id, 0)) |
|
|
|
f1 = f1_score(gold_labels, pred_labels, average="macro") |
|
print("Macro-F1 on HLDC-all-districts test set:", f1) |
|
return {"mF1": f1} |
|
|
|
def get_BLEU_score(ref_text_all, machine_text_all): |
|
sc_all = [] |
|
for i in range(len(ref_text_all)): |
|
ref_text = ref_text_all[i] |
|
machine_text = machine_text_all[i] |
|
tok_ref_text = nltk.word_tokenize(ref_text) |
|
tok_machine_text = nltk.word_tokenize(machine_text) |
|
sc = nltk.translate.bleu_score.sentence_bleu([tok_ref_text], tok_machine_text, weights = (0.5,0.5)) |
|
sc_all.append(sc) |
|
return sum(sc_all)/len(sc_all) |
|
|
|
def evaluate_cjpe(gold_data, pred_data): |
|
|
|
gold_labels = [] |
|
pred_labels = [] |
|
for id, label in gold_data["prediction"].items(): |
|
gold_labels.append(label) |
|
pred_labels.append(pred_data["prediction"].get(id, 0)) |
|
|
|
f1 = f1_score(gold_labels, pred_labels, average="macro") |
|
prediction_result = {"cjpe-eval": f1} |
|
print("Macro-F1 on ILDC test:", prediction_result) |
|
|
|
R = [] |
|
B = [] |
|
rl_evaluator = rouge.Rouge(metrics=['rouge-l'], max_n=2, limit_length=False, apply_avg=True) |
|
for x in range(1, 6): |
|
gold_explanations = [] |
|
pred_explanations = [] |
|
for k,v in gold_data['explanation'].items(): |
|
gold_explanations.append(v[f'expert_{x}']) |
|
pred_explanations.append(pred_data['explanation'][k]) |
|
print("Metrics for expert", x, "...", end=' ') |
|
rougex = rl_evaluator.get_scores(pred_explanations, gold_explanations)['rouge-l']['f'] |
|
bleux = get_BLEU_score(gold_explanations, pred_explanations) |
|
R.append(rougex) |
|
B.append(bleux) |
|
print("Done.") |
|
|
|
|
|
rouge_score = sum(R)/len(R) |
|
bleu_score = sum(B)/len(B) |
|
|
|
explanation_result = { |
|
"cjpe-exp-eval": { |
|
"rouge": rouge_score, |
|
"bleu": bleu_score, |
|
} |
|
} |
|
print("Explanability for ILDC Expert:", explanation_result) |
|
|
|
return {"mF1": f1, "ROUGE-L": rouge_score, "BLEU": bleu_score} |
|
|
|
def span2bio(txt, roles): |
|
roles = sorted(roles, key = lambda x:x['start']) |
|
roles_left = [r['start'] for r in roles] |
|
|
|
ttxt = re.findall(r'[{}]|\w+'.format(string.punctuation), txt) |
|
|
|
c = 0 |
|
cr = -1 |
|
prev = 'O' |
|
troles = [] |
|
for tok in ttxt: |
|
if c >= len(txt): |
|
break |
|
|
|
while txt[c] == ' ': |
|
c += 1 |
|
|
|
else: |
|
if c in roles_left: |
|
ind = roles_left.index(c) |
|
cr = roles[ind]['end'] |
|
prev = 'I-' + roles[ind]['label'] |
|
troles.append('B-' + roles[ind]['label']) |
|
else: |
|
if c < cr: |
|
troles.append(prev) |
|
else: |
|
troles.append('O') |
|
|
|
c += len(tok) |
|
|
|
if len(ttxt) != len(troles): |
|
troles += ['O'] * (len(ttxt) - len(troles)) |
|
|
|
assert len(ttxt) == len(troles) |
|
return ttxt, troles |
|
|
|
def evaluate_lner(gold_data, pred_data, text_data): |
|
with open("ner_labels.txt") as f: |
|
labels = f.read().strip().split("\n") |
|
|
|
results_per_fold = {} |
|
for fold in range(1, len(gold_data) + 1): |
|
gold = gold_data[f"fold_{fold}"] |
|
pred = pred_data[f"fold_{fold}"] |
|
text = text_data[f"fold_{fold}"] |
|
|
|
texts, gold_labels, pred_labels = [], [], [] |
|
|
|
for id, gold_label in tqdm(gold.items()): |
|
txt = text[id] |
|
pred_label = pred.get(id, []) |
|
|
|
txt_seg, gold_bio = span2bio(txt, gold_label) |
|
_, pred_bio = span2bio(txt, pred_label) |
|
|
|
texts.append(txt_seg) |
|
gold_labels.append(gold_bio) |
|
pred_labels.append(pred_bio) |
|
|
|
evaluator = Evaluator(gold_labels, pred_labels, tags=labels, loader="list") |
|
|
|
results, results_per_tag, _, _ = evaluator.evaluate() |
|
|
|
f1_scores = [results_per_tag[l]["strict"]["f1"] for l in results_per_tag] |
|
avg_f1 = sum(f1_scores) / len(f1_scores) |
|
print(f"Strict Macro-F1 on Fold {fold}:", avg_f1) |
|
results_per_fold[f"fold_{fold}"] = avg_f1 |
|
|
|
print("Strict macro-F1 on L-NER Dataset:", results_per_fold) |
|
return {"strict mF1": sum(results_per_fold.values())/len(results_per_fold)} |
|
|
|
|
|
def evaluate_rr(gold_data, pred_data): |
|
all_gold_labels = [] |
|
all_pred_labels = [] |
|
with open("rr_label_vocab.json") as f: |
|
label_vocab = json.load(f) |
|
|
|
|
|
for id, gold_labels in gold_data.items(): |
|
pred_labels = pred_data.get(id, ["None"] * len(gold_labels)) |
|
for i in range(len(gold_labels)): |
|
g = gold_labels[i] |
|
p = pred_labels[i] |
|
if g not in label_vocab: continue |
|
for pp in p.split(): |
|
if pp in label_vocab: |
|
p = pp |
|
break |
|
if p not in label_vocab: continue |
|
all_gold_labels.append([label_vocab[g]]) |
|
all_pred_labels.append([label_vocab[p]]) |
|
|
|
f1 = f1_score(all_gold_labels, all_pred_labels, average="macro") |
|
print(f"Macro-F1 on combined test set:", f1) |
|
return {"mF1": f1} |
|
|
|
|
|
def evaluate_lsi(gold_data, pred_data): |
|
with open("lsi_label_vocab.json") as f: |
|
label_vocab = json.load(f) |
|
|
|
gold_matrix = np.zeros((len(gold_data), len(label_vocab))) |
|
pred_matrix = np.zeros((len(gold_data), len(label_vocab))) |
|
|
|
for i, (id, gold_labels) in enumerate(gold_data.items()): |
|
pred_labels = pred_data.get(id, []) |
|
|
|
for label in gold_labels: |
|
if label in label_vocab: |
|
gold_matrix[i, label_vocab[label]] = 1 |
|
|
|
for label in pred_labels: |
|
if label in label_vocab: |
|
pred_matrix[i, label_vocab[label]] = 1 |
|
|
|
f1 = f1_score(gold_matrix, pred_matrix, average="macro") |
|
print("Macro-F1 on ILSI test set:", f1) |
|
return {"mF1": f1} |
|
|
|
|
|
def evaluate_pcr(gold_data, pred_data): |
|
f1_scores = [] |
|
for k in range(1, 21): |
|
correct, gold_total, pred_total = 0, 0, 0 |
|
for id, gold_candidates in tqdm(gold_data.items(), desc="pcr"): |
|
pred_candidates = pred_data.get(id, []) |
|
gold_candidates = [c for c in gold_candidates if c != id] |
|
pred_candidates = [c for c in pred_candidates if c != id] |
|
|
|
c, g, p = get_micro_at_k(gold_candidates, pred_candidates, k) |
|
correct += c |
|
gold_total += g |
|
pred_total += p |
|
|
|
precision = correct / pred_total if pred_total > 0 else 0 |
|
recall = correct / gold_total if gold_total > 0 else 0 |
|
f1 = ( |
|
2 * precision * recall / (precision + recall) |
|
if precision + recall > 0 |
|
else 0 |
|
) |
|
f1_scores.append(f1) |
|
|
|
print(f"Micro-F1@{k} on IL-PCR test set:", f1) |
|
|
|
max_f1 = max(f1_scores) |
|
index_max = f1_scores.index(max_f1) + 1 |
|
return {"muF1@K": f"{max_f1:.2f}@{index_max}"} |
|
|
|
|
|
def evaluate_summ(gold_data, pred_data): |
|
gold_summaries = [] |
|
pred_summaries = [] |
|
|
|
for id, gold_summary in gold_data.items(): |
|
if id in pred_data: |
|
gold_summary = re.sub(r"\s+", " ", gold_summary.replace("\n", " ")).strip() |
|
pred_summary = re.sub(r"\s+", " ", pred_data[id].replace("\n", " ")).strip() |
|
|
|
gold_summaries.append(gold_summary) |
|
pred_summaries.append(pred_summary) |
|
|
|
|
|
rl_evaluator = rouge.Rouge(metrics=['rouge-n','rouge-l'], max_n=2, limit_length=False, apply_avg=True) |
|
rl_scores = rl_evaluator.get_scores(pred_summaries, gold_summaries) |
|
print("Rouge:", {k:v['f'] for k,v in rl_scores.items()}, flush=True) |
|
|
|
_, _, bs = bert_score.score(pred_summaries, gold_summaries, lang="en", verbose=True, device='cuda') |
|
print("BERTSCORE:", bs.mean().item()) |
|
return {'ROUGE-L': rl_scores['rouge-l']['f'], 'BERTSCORE': bs.mean().item()} |
|
|
|
|
|
def evaluate_lmt(gold_data, pred_data): |
|
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-bert") |
|
bleu = BLEU() |
|
chrfp = CHRF(word_order=2) |
|
gleu = evaluate.load("google_bleu") |
|
|
|
G = defaultdict(lambda: defaultdict(list)) |
|
P = defaultdict(lambda: defaultdict(list)) |
|
|
|
for dataset in gold_data: |
|
for id, gold_text in gold_data[dataset].items(): |
|
lang = id.split("/")[1].strip() |
|
gold_tokens = " ".join(tokenizer.tokenize(gold_text)) |
|
pred_tokens = " ".join(tokenizer.tokenize(pred_data[dataset][id])) |
|
G[dataset][lang].append(gold_tokens) |
|
P[dataset][lang].append(pred_tokens) |
|
|
|
bleu_scores, chrfpp_scores, gleu_scores = [], [], [] |
|
|
|
for dataset in G: |
|
print("Dataset", dataset) |
|
dataset_bleu, dataset_chrfpp, dataset_gleu = [], [], [] |
|
|
|
for lang in G[dataset]: |
|
gold = G[dataset][lang] |
|
pred = P[dataset][lang] |
|
|
|
bleu_score = bleu.corpus_score(pred, [gold]).score |
|
chrfpp_score = chrfp.corpus_score(pred, [gold]).score |
|
gleu_score = gleu.compute(predictions=pred, references=gold)["google_bleu"] |
|
|
|
dataset_bleu.append(bleu_score) |
|
dataset_chrfpp.append(chrfpp_score) |
|
dataset_gleu.append(gleu_score) |
|
|
|
bleu_scores.append(sum(dataset_bleu) / len(dataset_bleu)) |
|
chrfpp_scores.append(sum(dataset_chrfpp) / len(dataset_chrfpp)) |
|
gleu_scores.append(sum(dataset_gleu) / len(dataset_gleu)) |
|
|
|
return { |
|
"BLEU": sum(bleu_scores) / len(bleu_scores), |
|
"GLEU": sum(gleu_scores) / len(gleu_scores), |
|
"chrF++": sum(chrfpp_scores) / len(chrfpp_scores), |
|
} |
|
|
|
|
|
def create_output_json(evaluation_results): |
|
output = { |
|
"Method": "GPT-5 (2-shot)", |
|
"Submitted By": "IL-TUR", |
|
"Github Link": "dummy submission", |
|
"L-NER": {"strict mF1": evaluation_results["lner"]["strict mF1"]}, |
|
"RR": {"mF1": evaluation_results["rr"]["mF1"]}, |
|
"CJPE": { |
|
"mF1": evaluation_results["cjpe"]["mF1"], |
|
"ROUGE-L": evaluation_results["cjpe"]["ROUGE-L"], |
|
"BLEU": evaluation_results["cjpe"]["BLEU"], |
|
}, |
|
"BAIL": {"mF1": evaluation_results["bail"]["mF1"]}, |
|
"LSI": {"mF1": evaluation_results["lsi"]["mF1"]}, |
|
"PCR": {"muF1@K": evaluation_results["pcr"]["muF1@K"]}, |
|
"SUMM": { |
|
"ROUGE-L": evaluation_results["summ"]["ROUGE-L"], |
|
"BERTSCORE": evaluation_results["summ"]["BERTSCORE"] |
|
}, |
|
"L-MT": { |
|
"BLEU": evaluation_results["lmt"]["BLEU"], |
|
"GLEU": evaluation_results["lmt"]["GLEU"], |
|
"chrF++": evaluation_results["lmt"]["chrF++"], |
|
}, |
|
} |
|
return [output] |
|
|
|
|
|
def main(): |
|
|
|
|
|
gold_data = load_json("submissions/baseline/IL_TUR_eval_gold.json") |
|
pred_data = load_json("submissions/baseline/IL_TUR_eval_submission_dummy.json") |
|
pred_data = gold_data |
|
evaluation_results = {} |
|
|
|
for task in pred_data.keys(): |
|
print(f"Task: {task}") |
|
|
|
if task == "bail": |
|
evaluation_results[task] = evaluate_bail(gold_data[task], pred_data[task]) |
|
elif task == "cjpe": |
|
nltk.download('punkt') |
|
evaluation_results.update(evaluate_cjpe(gold_data[task], pred_data[task])) |
|
elif task == "lner": |
|
text_data = load_json("lner-text.json") |
|
evaluation_results[task] = evaluate_lner( |
|
gold_data[task], pred_data[task], text_data |
|
) |
|
elif task == "rr": |
|
evaluation_results[task] = evaluate_rr(gold_data[task], pred_data[task]) |
|
elif task == "lsi": |
|
evaluation_results[task] = evaluate_lsi(gold_data[task], pred_data[task]) |
|
elif task == "pcr": |
|
evaluation_results[task] = evaluate_pcr(gold_data[task], pred_data[task]) |
|
elif task == "summ": |
|
nltk.download('punkt') |
|
evaluation_results[task] = evaluate_summ(gold_data[task], pred_data[task]) |
|
elif task == "lmt": |
|
evaluation_results[task] = evaluate_lmt(gold_data[task], pred_data[task]) |
|
|
|
|
|
for task, result in evaluation_results.items(): |
|
if isinstance(result, dict): |
|
for subtask, subresult in result.items(): |
|
if isinstance(subresult, dict): |
|
for subsubtask, subsubresult in subresult.items(): |
|
evaluation_results[task][subtask][ |
|
subsubtask |
|
] = f"{subsubresult:.2f}" |
|
else: |
|
if isinstance(subresult, str): |
|
evaluation_results[task][subtask] = subresult |
|
else: |
|
evaluation_results[task][subtask] = f"{subresult:.2f}" |
|
else: |
|
if isinstance(result, str): |
|
evaluation_results[task] = result |
|
else: |
|
evaluation_results[task] = f"{result:.2f}" |
|
|
|
blank_scores = { |
|
"lner": {"strict mF1": "-"}, |
|
"rr": {"mF1": "-"}, |
|
"cjpe": {"mF1": "-", "ROUGE-L": "-", "BLEU": "-"}, |
|
"bail": {"mF1": "-"}, |
|
"lsi": {"mF1": "-"}, |
|
"pcr": {"muF1@K": "-"}, |
|
"summ": {"ROUGE-L": "-", "BERTSCORE": "-"}, |
|
"lmt": {"BLEU": "-", "GLEU": "-", "chrF++": "-"}, |
|
} |
|
|
|
print("--------------------------Evaluation Summary--------------------------") |
|
for task, result in evaluation_results.items(): |
|
print(f"{task}: {result}") |
|
print("---------------------------------------------------------------------") |
|
|
|
|
|
for task in gold_data.keys(): |
|
if task not in pred_data: |
|
evaluation_results[task] = blank_scores[task] |
|
|
|
|
|
output_json = create_output_json(evaluation_results) |
|
with open("evaluation_results.json", "w") as f: |
|
json.dump(output_json, f, indent=2) |
|
print("Evaluation results saved to evaluation_results.json") |
|
|
|
|
|
def get_evaluation_scores(gold_data, submission_data): |
|
evaluation_results = {} |
|
|
|
for task in submission_data.keys(): |
|
print(f"Task: {task}") |
|
|
|
if task == "bail": |
|
evaluation_results[task] = evaluate_bail( |
|
gold_data[task], submission_data[task] |
|
) |
|
elif task == "cjpe": |
|
nltk.download('punkt') |
|
evaluation_results.update( |
|
evaluate_cjpe(gold_data[task], submission_data[task]) |
|
) |
|
elif task == "lner": |
|
text_data = load_json("lner-text.json") |
|
evaluation_results[task] = evaluate_lner( |
|
gold_data[task], submission_data[task], text_data |
|
) |
|
elif task == "rr": |
|
evaluation_results[task] = evaluate_rr( |
|
gold_data[task], submission_data[task] |
|
) |
|
elif task == "lsi": |
|
evaluation_results[task] = evaluate_lsi( |
|
gold_data[task], submission_data[task] |
|
) |
|
elif task == "pcr": |
|
evaluation_results[task] = evaluate_pcr( |
|
gold_data[task], submission_data[task] |
|
) |
|
elif task == "summ": |
|
nltk.download('punkt') |
|
evaluation_results[task] = evaluate_summ( |
|
gold_data[task], submission_data[task] |
|
) |
|
elif task == "lmt": |
|
evaluation_results[task] = evaluate_lmt( |
|
gold_data[task], submission_data[task] |
|
) |
|
|
|
|
|
for task, result in evaluation_results.items(): |
|
if isinstance(result, dict): |
|
for subtask, subresult in result.items(): |
|
if isinstance(subresult, dict): |
|
for subsubtask, subsubresult in subresult.items(): |
|
evaluation_results[task][subtask][ |
|
subsubtask |
|
] = f"{subsubresult:.2f}" |
|
else: |
|
if isinstance(subresult, str): |
|
evaluation_results[task][subtask] = subresult |
|
else: |
|
evaluation_results[task][subtask] = f"{subresult:.2f}" |
|
else: |
|
if isinstance(result, str): |
|
evaluation_results[task] = result |
|
else: |
|
evaluation_results[task] = f"{result:.2f}" |
|
|
|
blank_scores = { |
|
"lner": {"strict mF1": "-"}, |
|
"rr": {"mF1": "-"}, |
|
"cjpe": {"mF1": "-", "ROUGE-L": "-", "BLEU": "-"}, |
|
"bail": {"mF1": "-"}, |
|
"lsi": {"mF1": "-"}, |
|
"pcr": {"muF1@K": "-"}, |
|
"summ": {"ROUGE-L": "-", "BERTSCORE": "-"}, |
|
"lmt": {"BLEU": "-", "GLEU": "-", "chrF++": "-"}, |
|
} |
|
|
|
|
|
for task in gold_data.keys(): |
|
if task not in submission_data: |
|
evaluation_results[task] = blank_scores[task] |
|
|
|
print("--------------------------Evaluation Summary--------------------------") |
|
for task, result in evaluation_results.items(): |
|
print(f"{task}: {result}") |
|
print("---------------------------------------------------------------------") |
|
output_json = create_output_json(evaluation_results) |
|
|
|
return output_json |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|