File size: 4,219 Bytes
056e156
 
 
 
2b8f89d
056e156
 
741eae9
e41abec
056e156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b8f89d
 
 
056e156
2b8f89d
 
 
 
 
 
056e156
2b8f89d
 
 
 
056e156
2b8f89d
 
056e156
 
 
 
2b8f89d
 
 
056e156
2b8f89d
 
9a20624
2b8f89d
 
9a20624
741eae9
2b8f89d
 
 
 
 
741eae9
2b8f89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741eae9
7be8121
2b8f89d
 
741eae9
 
1eda6aa
741eae9
056e156
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from email.utils import parseaddr
from huggingface_hub import HfApi
import os
import datetime
import json
import pandas as pd

LEADERBOARD_PATH = "Exploration-Lab/IL-TUR-Leaderboard"
# RESULTS_PATH = "Exploration-Lab/IL-TUR-Leaderboard-results"
api = HfApi()
TOKEN = os.environ.get("TOKEN", None)
YEAR_VERSION = "2024"


def format_error(msg):
    return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"


def format_warning(msg):
    return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"


def format_log(msg):
    return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"


def model_hyperlink(link, model_name):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def input_verification(method_name, url, path_to_file, organisation, mail):
    for input in [method_name, url, path_to_file, organisation, mail]:
        if input == "":
            return format_warning("Please fill all the fields.")

    # Very basic email parsing
    _, parsed_mail = parseaddr(mail)
    if not "@" in parsed_mail:
        return format_warning("Please provide a valid email adress.")

    if path_to_file is None:
        return format_warning("Please attach a file.")

    return parsed_mail


def add_new_eval(
    method_name: str,
    url: str,
    path_to_file: str,
    organisation: str,
    mail: str,
):

    parsed_mail = input_verification(
        method_name,
        url,
        path_to_file,
        organisation,
        mail,
    )

    # # load the file
    # df = pd.read_csv(path_to_file)
    # submission_df = pd.read_csv(path_to_file)

    # # modify the df to include metadata
    # df["Method"] = method_name
    # df["url"] = url
    # df["organisation"] = organisation
    # df["mail"] = parsed_mail
    # df["timestamp"] = datetime.datetime.now()

    # submission_df = pd.read_csv(path_to_file)
    # submission_df["Method"] = method_name
    # submission_df["Submitted By"] = organisation
    # # upload to spaces using the hf api at

    # path_in_repo = f"submissions/{method_name}"
    # file_name = f"{method_name}-{organisation}-{datetime.datetime.now().strftime('%Y-%m-%d')}.csv"

    # upload the df to spaces
    import io

    # read the submission json file
    with open(path_to_file, "r") as f:
        submission = json.load(f)

    with open("submissions/baseline/results.json", "r") as f:
        results = json.load(f)

    # update the results
    results.append(submission[0])

    leaderboard_buffer = io.BytesIO()
    # df.to_csv(buffer, index=False)  # Write the DataFrame to a buffer in CSV format
    # buffer.seek(0)  # Rewind the buffer to the beginning

    # save the results to buffer
    leaderboard_buffer.write(json.dumps(results).encode())
    leaderboard_buffer.seek(0)

    # api.upload_file(
    #     repo_id=RESULTS_PATH,
    #     path_in_repo=f"{path_in_repo}/{file_name}",
    #     path_or_fileobj=buffer,
    #     token=TOKEN,
    #     repo_type="dataset",
    # )
    # # read the leaderboard
    # leaderboard_df = pd.read_csv(f"submissions/baseline/baseline.csv")

    # # append the new submission_df csv to the leaderboard
    # # leaderboard_df = leaderboard_df._append(submission_df)
    # # leaderboard_df = pd.concat([leaderboard_df, submission_df], ignore_index=True)

    # # save the new leaderboard
    # # leaderboard_df.to_csv(f"submissions/baseline/baseline.csv", index=False)
    # leaderboard_buffer = io.BytesIO()
    # leaderboard_df.to_csv(leaderboard_buffer, index=False)
    # leaderboard_buffer.seek(0)
    # with open("submissions/baseline/results.json", "w") as f:
    #     json.dump(results, f)

    api.upload_file(
        repo_id=LEADERBOARD_PATH,
        # path_in_repo=f"submissions/baseline/baseline.csv",
        path_in_repo=f"submissions/results.json",
        path_or_fileobj=leaderboard_buffer,
        token=TOKEN,
        repo_type="space",
    )

    return format_log(
        f"Method {method_name} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed"
    )