File size: 16,838 Bytes
9346f1c
 
056e156
4596a70
056e156
 
 
 
 
2b8f89d
 
 
 
 
 
 
 
056e156
 
 
 
8c49cb6
2a73469
10f9b3c
056e156
 
 
 
2b8f89d
bee5a7d
 
 
056e156
 
 
bee5a7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b8f89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bee5a7d
2b8f89d
 
056e156
 
a2790cb
 
72a0f0f
2b8f89d
 
aa7c3f4
056e156
adb0416
ef5b51c
056e156
 
 
 
 
 
ef5b51c
adb0416
056e156
2b8f89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056e156
8c49cb6
3ae1b8c
056e156
 
d2179b0
056e156
 
 
 
 
 
 
 
d2179b0
056e156
 
 
 
 
 
 
 
7644705
056e156
 
10f9b3c
ecef2dc
056e156
 
 
 
2b8f89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056e156
 
 
 
 
 
 
8c49cb6
2b8f89d
 
 
 
 
 
 
 
 
 
 
6e8f400
056e156
 
 
2b8f89d
056e156
 
ecef2dc
6e8f400
460d762
056e156
 
 
 
 
 
 
 
 
 
 
 
 
 
2b8f89d
 
 
 
 
 
056e156
2b8f89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c49cb6
056e156
8c49cb6
056e156
 
2b8f89d
 
 
 
 
 
 
 
 
 
 
056e156
8cb7546
 
2b8f89d
056e156
 
2b8f89d
 
056e156
 
2b8f89d
056e156
2b8f89d
056e156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f2777e
056e156
 
 
 
d16cee2
056e156
10f9b3c
056e156
10f9b3c
e41abec
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import gradio as gr
import pandas as pd
import os
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from uploads import add_new_eval

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@inproceedings{iltur-2024,
      title = "IL-TUR: Benchmark for Indian Legal Text Understanding and Reasoning",
      author = "Joshi, Abhinav and Paul, Shounak and Sharma, Akshat and Goyal, Pawan and Ghosh, Saptarshi and Modi, Ashutosh"
      booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
      month = aug,
      year = "2024",
      address = "Bangkok, Thailand",
      publisher = "Association for Computational Linguistics",
  }"""

api = HfApi()
TOKEN = os.environ.get("TOKEN", None)
LEADERBOARD_PATH = f"Exploration-lab/IL-TUR-Leaderboard"


def restart_space():
    api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)


# Function to load data from a given CSV file
def baseline_load_data(tasks, task_metrics):
    # # version = version.replace("%", "p")
    # file_path = f"submissions/baseline/baseline.csv"  # Replace with your file paths
    # df = pd.read_csv(file_path)

    # we only want specific columns and in a specific order

    # column_names = [
    #     "Method",
    #     "Submitted By",
    #     "L-NER",
    #     "RR",
    #     "CJPE",
    #     "BAIL",
    #     "LSI",
    #     "PCR",
    #     "SUMM",
    #     "Average",
    # ]
    # # Method,Submitted by,L-NER,RR,CJPE,BAIL,LSI,PCR,SUMM,L-MT
    # column_names = [
    #     "Method",
    #     "Submitted By",
    #     "L-NER",
    #     "RR",
    #     "CJPE",
    #     "BAIL",
    #     "LSI",
    #     "PCR",
    #     "SUMM",
    #     # "Average",
    # ]

    # if tasks is None:
    #     breakpoint()
    # # based on the tasks, remove the columns that are not needed
    # if "L-NER" not in tasks:
    #     column_names.remove("L-NER")
    # if "RR" not in tasks:
    #     column_names.remove("RR")
    # if "CJPE" not in tasks:
    #     column_names.remove("CJPE")
    # if "BAIL" not in tasks:
    #     column_names.remove("BAIL")
    # if "LSI" not in tasks:
    #     column_names.remove("LSI")
    # if "PCR" not in tasks:
    #     column_names.remove("PCR")
    # if "SUMM" not in tasks:
    #     column_names.remove("SUMM")

    # df = df[column_names]

    import json

    # load the results json file
    with open("submissions/baseline/results.json") as f:
        results = json.load(f)
    # add the results to the dataframe
    # Method,Submitted By,L-NER,RR,CJPE,BAIL,LSI,PCR,SUMM,L-MT
    # Metric,-,strict mF1,mF1,mF1|ROUGE-L|BLEU,mF1,mF1,muF1@K,ROUGE-L|BERTSCORE,BLEU|GLEU|chrF++
    # create a new df to display the results
    results_df = pd.DataFrame(
        columns=[
            "Method",
            "Submitted By",
            "Github Link",
            "L-NER",
            "RR",
            "CJPE",
            "BAIL",
            "LSI",
            "PCR",
            "SUMM",
            "L-MT",
            # "Average",
        ]
    )
    # breakpoint()
    for entry in results:
        results_df = results_df.append(
            {
                "Method": entry["Method"],
                "Submitted By": entry["Submitted By"],
                "Github Link": entry["Github Link"],
                "L-NER": entry["L-NER"][task_metrics["L-NER"]],
                "RR": entry["RR"][task_metrics["RR"]],
                "CJPE": entry["CJPE"][task_metrics["CJPE"]],
                "BAIL": entry["BAIL"][task_metrics["BAIL"]],
                "LSI": entry["LSI"][task_metrics["LSI"]],
                "PCR": entry["PCR"][task_metrics["PCR"]],
                "SUMM": entry["SUMM"][task_metrics["SUMM"]],
                "L-MT": entry["L-MT"][task_metrics["L-MT"]],
                # "Average": ,
            },
            ignore_index=True,
        )

    # breakpoint()
    # add the average column
    # results_df["Average"] = results_df.mean(axis=1)

    df = results_df
    # df = df.sort_values(by="Average", ascending=False)
    # remove the columns that are not in tasks
    selected_columns = (
        [
            "Method",
            "Submitted By",
        ]
        + tasks
        + ["Github Link"]
    )
    # print(tasks)
    df = df[selected_columns]

    df = df.drop_duplicates(subset=["Method"], keep="first")

    return df


def load_data(tasks, task_metrics):
    baseline_df = baseline_load_data(tasks, task_metrics)

    return baseline_df


# Function for searching in the leaderboard
def search_leaderboard(df, query):
    if query == "":
        return df
    else:
        return df[df["Method"].str.contains(query)]


# Function to change the version of the leaderboard
def change_version(
    tasks,
    l_ner_metric,
    rr_metric,
    cjpe_metric,
    bail_metric,
    lsi_metric,
    pcr_metric,
    summ_metric,
    lmt_metric,
):
    task_metrics = {
        "L-NER": l_ner_metric,
        "RR": rr_metric,
        "CJPE": cjpe_metric,
        "BAIL": bail_metric,
        "LSI": lsi_metric,
        "PCR": pcr_metric,
        "SUMM": summ_metric,
        "L-MT": lmt_metric,
    }

    new_df = load_data(tasks, task_metrics)
    return new_df


# Initialize Gradio app
demo = gr.Blocks()

with demo:
    gr.Markdown(
        """
    ## πŸ₯‡ IL-TUR Leaderboard
    Legal systems worldwide are inundated with exponential growth in cases and documents. There is an imminent need to develop NLP and ML techniques for automatically processing and understanding legal documents to streamline the legal system. However, evaluating and comparing various NLP models designed specifically for the legal domain is challenging. This paper addresses this challenge by proposing IL-TUR: Benchmark for Indian Legal Text Understanding and Reasoning. IL-TUR  contains monolingual (English, Hindi) and multi-lingual (9 Indian languages) domain-specific tasks that address different aspects of the legal system from the point of view of understanding and reasoning over Indian legal documents. We present baseline models (including LLM-based) for each task, outlining the gap between models and the ground truth. We will release a public leaderboard where the research community can upload and compare legal text understanding systems on various metrics, thus fostering research in the legal domain.
    Read more at [https://exploration-lab.github.io/IL-TUR/](https://exploration-lab.github.io/IL-TUR/).
    """
    )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
                show_copy_button=True,
            )  # .style(show_copy_button=True)

    with gr.Tabs():
        with gr.TabItem("Leaderboard"):

            with gr.Row():
                tasks_checkbox = gr.CheckboxGroup(
                    label="Select Tasks",
                    choices=["L-NER", "RR", "CJPE", "BAIL", "LSI", "PCR", "SUMM"],
                    value=["L-NER", "RR", "CJPE", "BAIL", "LSI", "PCR", "SUMM"],
                    interactive=True,
                )

            with gr.Row():
                l_ner_metric = gr.Radio(
                    label="L-NER",
                    choices=["strict mF1"],
                    value="strict mF1",
                    interactive=True,
                )
                rr_metric = gr.Radio(
                    label="RR",
                    choices=["mF1"],
                    value="mF1",
                    interactive=True,
                )
                cjpe_metric = gr.Radio(
                    label="CJPE",
                    choices=["mF1", "ROUGE-L", "BLEU"],
                    value="mF1",
                    interactive=True,
                )
                bail_metric = gr.Radio(
                    label="BAIL",
                    choices=["mF1"],
                    value="mF1",
                    interactive=True,
                )
                lsi_metric = gr.Radio(
                    label="LSI",
                    choices=["mF1"],
                    value="mF1",
                    interactive=True,
                )
                pcr_metric = gr.Radio(
                    label="PCR",
                    choices=["muF1@K"],
                    value="muF1@K",
                    interactive=True,
                )
                summ_metric = gr.Radio(
                    label="SUMM",
                    choices=["ROUGE-L", "BERTSCORE"],
                    value="ROUGE-L",
                    interactive=True,
                )
                lmt_metric = gr.Radio(
                    label="L-MT",
                    choices=["BLEU", "GLEU", "chrF++"],
                    value="BLEU",
                    interactive=True,
                )

            with gr.Row():
                search_bar = gr.Textbox(
                    placeholder="Search for methods...",
                    show_label=False,
                )

            task_metrics = {
                "L-NER": l_ner_metric.value,
                "RR": rr_metric.value,
                "CJPE": cjpe_metric.value,
                "BAIL": bail_metric.value,
                "LSI": lsi_metric.value,
                "PCR": pcr_metric.value,
                "SUMM": summ_metric.value,
                "L-MT": lmt_metric.value,
            }

            leaderboard_table = gr.components.Dataframe(
                value=load_data(
                    # "baseline",
                    ["L-NER", "RR", "CJPE", "BAIL", "LSI", "PCR", "SUMM"],
                    task_metrics=task_metrics,
                ),
                interactive=True,
                visible=True,
            )

            # version_dropdown.change(
            #     change_version,
            #     inputs=[model_dropdown, version_dropdown, tasks_checkbox],
            #     outputs=leaderboard_table,
            # )

            # model_dropdown.change(
            #     change_version,
            #     inputs=[model_dropdown, version_dropdown, tasks_checkbox],
            #     outputs=leaderboard_table,
            # )

            search_bar.change(
                search_leaderboard,
                inputs=[leaderboard_table, search_bar],
                outputs=leaderboard_table,
            )
            # breakpoint()
            l_ner_metric.change(
                change_version,
                inputs=[
                    tasks_checkbox,
                    l_ner_metric,
                    rr_metric,
                    cjpe_metric,
                    bail_metric,
                    lsi_metric,
                    pcr_metric,
                    summ_metric,
                    lmt_metric,
                ],
                outputs=leaderboard_table,
            )
            rr_metric.change(
                change_version,
                inputs=[
                    tasks_checkbox,
                    l_ner_metric,
                    rr_metric,
                    cjpe_metric,
                    bail_metric,
                    lsi_metric,
                    pcr_metric,
                    summ_metric,
                    lmt_metric,
                ],
                outputs=leaderboard_table,
            )
            cjpe_metric.change(
                change_version,
                inputs=[
                    tasks_checkbox,
                    l_ner_metric,
                    rr_metric,
                    cjpe_metric,
                    bail_metric,
                    lsi_metric,
                    pcr_metric,
                    summ_metric,
                    lmt_metric,
                ],
                outputs=leaderboard_table,
            )
            bail_metric.change(
                change_version,
                inputs=[
                    tasks_checkbox,
                    l_ner_metric,
                    rr_metric,
                    cjpe_metric,
                    bail_metric,
                    lsi_metric,
                    pcr_metric,
                    summ_metric,
                    lmt_metric,
                ],
                outputs=leaderboard_table,
            )
            lsi_metric.change(
                change_version,
                inputs=[
                    tasks_checkbox,
                    l_ner_metric,
                    rr_metric,
                    cjpe_metric,
                    bail_metric,
                    lsi_metric,
                    pcr_metric,
                    summ_metric,
                    lmt_metric,
                ],
                outputs=leaderboard_table,
            )
            pcr_metric.change(
                change_version,
                inputs=[
                    tasks_checkbox,
                    l_ner_metric,
                    rr_metric,
                    cjpe_metric,
                    bail_metric,
                    lsi_metric,
                    pcr_metric,
                    summ_metric,
                    lmt_metric,
                ],
                outputs=leaderboard_table,
            )
            summ_metric.change(
                change_version,
                inputs=[
                    tasks_checkbox,
                    l_ner_metric,
                    rr_metric,
                    cjpe_metric,
                    bail_metric,
                    lsi_metric,
                    pcr_metric,
                    summ_metric,
                    lmt_metric,
                ],
                outputs=leaderboard_table,
            )
            lmt_metric.change(
                change_version,
                inputs=[
                    tasks_checkbox,
                    l_ner_metric,
                    rr_metric,
                    cjpe_metric,
                    bail_metric,
                    lsi_metric,
                    pcr_metric,
                    summ_metric,
                    lmt_metric,
                ],
                outputs=leaderboard_table,
            )
            tasks_checkbox.change(
                change_version,
                inputs=[
                    tasks_checkbox,
                    l_ner_metric,
                    rr_metric,
                    cjpe_metric,
                    bail_metric,
                    lsi_metric,
                    pcr_metric,
                    summ_metric,
                    lmt_metric,
                ],
                outputs=leaderboard_table,
            )

    with gr.Accordion("Submit the results of your Method"):
        with gr.Row():
            with gr.Column():
                method_name_textbox = gr.Textbox(label="Method")
                url_textbox = gr.Textbox(label="Github Link")
                organisation = gr.Textbox(label="Organisation")
                mail = gr.Textbox(label="Contact email")
            with gr.Column():
                file_output = gr.File()
                submit_button = gr.Button("Submit Eval")
        submission_result = gr.Markdown()
        submit_button.click(
            add_new_eval,
            [
                method_name_textbox,
                url_textbox,
                file_output,
                organisation,
                mail,
            ],
            submission_result,
        )

    gr.Markdown(
        """
    ## Quick Links

    - [**Website**](https://exploration-lab.github.io/IL-TUR): The landing page for IL-TUR
    - [**arXiv Paper**](https://arxiv.org/abs/2307.05260): Detailed information about the IL-TUR dataset and its significance in unlearning tasks.
    - [**GitHub Repository**](https://github.com/exploration-lab/IL-TUR): Access the source code, fine-tuning scripts, and additional resources for the IL-TUR dataset.
    - [**Dataset on Hugging Face**](https://huggingface.co/datasets/Exploration-Lab/IL-TUR): Direct link to download the IL-TUR dataset.
    - [**Leaderboard on Hugging Face Spaces**](https://huggingface.co/spaces/Exploration-Lab/IL-TUR_leaderboard): Current rankings and submissions for the IL-TUR dataset challenges.
    
    ## Loading the Dataset
    
    To load the dataset, use the following code:
    
    ```python
    from datasets import load_dataset
    dataset = load_dataset("Exploration-Lab/IL-TUR","<task_name>")
    ```


    """
    )

# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
# demo.queue(default_concurrency_limit=40).launch()

# demo.launch()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
# demo.launch(debug=True)
demo.launch(share=True)