Spaces:
Runtime error
Runtime error
# Repo source: https://github.com/vt-vl-lab/3d-photo-inpainting | |
#import os | |
#os.environ['QT_DEBUG_PLUGINS'] = '1' | |
import subprocess | |
#subprocess.run('ldd /home/user/.local/lib/python3.8/site-packages/PyQt5/Qt/plugins/platforms/libqxcb.so', shell=True) | |
#subprocess.run('pip list', shell=True) | |
subprocess.run('nvidia-smi', shell=True) | |
from pyvirtualdisplay import Display | |
display = Display(visible=0, size=(1920, 1080)).start() | |
#subprocess.run('echo $DISPLAY', shell=True) | |
# 3d inpainting imports | |
import numpy as np | |
import argparse | |
import glob | |
import os | |
from functools import partial | |
import vispy | |
import scipy.misc as misc | |
from tqdm import tqdm | |
import yaml | |
import time | |
import sys | |
from mesh import write_ply, read_ply, output_3d_photo | |
from utils import get_MiDaS_samples, read_MiDaS_depth | |
import torch | |
import cv2 | |
from skimage.transform import resize | |
import imageio | |
import copy | |
from networks import Inpaint_Color_Net, Inpaint_Depth_Net, Inpaint_Edge_Net | |
from MiDaS.run import run_depth | |
from boostmonodepth_utils import run_boostmonodepth | |
from MiDaS.monodepth_net import MonoDepthNet | |
import MiDaS.MiDaS_utils as MiDaS_utils | |
from bilateral_filtering import sparse_bilateral_filtering | |
import torch | |
# gradio imports | |
import gradio as gr | |
import uuid | |
from PIL import Image | |
from pathlib import Path | |
import shutil | |
from time import sleep | |
def inpaint(img_name, num_frames, fps): | |
config = yaml.load(open('argument.yml', 'r')) | |
config['num_frames'] = num_frames | |
config['fps'] = fps | |
if torch.cuda.is_available(): | |
config['gpu_ids'] = 0 | |
if config['offscreen_rendering'] is True: | |
vispy.use(app='egl') | |
os.makedirs(config['mesh_folder'], exist_ok=True) | |
os.makedirs(config['video_folder'], exist_ok=True) | |
os.makedirs(config['depth_folder'], exist_ok=True) | |
sample_list = get_MiDaS_samples(config['src_folder'], config['depth_folder'], config, config['specific'], img_name.stem) | |
normal_canvas, all_canvas = None, None | |
if isinstance(config["gpu_ids"], int) and (config["gpu_ids"] >= 0): | |
device = config["gpu_ids"] | |
else: | |
device = "cpu" | |
print(f"running on device {device}") | |
for idx in tqdm(range(len(sample_list))): | |
depth = None | |
sample = sample_list[idx] | |
print("Current Source ==> ", sample['src_pair_name']) | |
mesh_fi = os.path.join(config['mesh_folder'], sample['src_pair_name'] +'.ply') | |
image = imageio.imread(sample['ref_img_fi']) | |
print(f"Running depth extraction at {time.time()}") | |
if config['use_boostmonodepth'] is True: | |
run_boostmonodepth(sample['ref_img_fi'], config['src_folder'], config['depth_folder']) | |
elif config['require_midas'] is True: | |
run_depth([sample['ref_img_fi']], config['src_folder'], config['depth_folder'], | |
config['MiDaS_model_ckpt'], MonoDepthNet, MiDaS_utils, target_w=640) | |
if 'npy' in config['depth_format']: | |
config['output_h'], config['output_w'] = np.load(sample['depth_fi']).shape[:2] | |
else: | |
config['output_h'], config['output_w'] = imageio.imread(sample['depth_fi']).shape[:2] | |
frac = config['longer_side_len'] / max(config['output_h'], config['output_w']) | |
config['output_h'], config['output_w'] = int(config['output_h'] * frac), int(config['output_w'] * frac) | |
config['original_h'], config['original_w'] = config['output_h'], config['output_w'] | |
if image.ndim == 2: | |
image = image[..., None].repeat(3, -1) | |
if np.sum(np.abs(image[..., 0] - image[..., 1])) == 0 and np.sum(np.abs(image[..., 1] - image[..., 2])) == 0: | |
config['gray_image'] = True | |
else: | |
config['gray_image'] = False | |
image = cv2.resize(image, (config['output_w'], config['output_h']), interpolation=cv2.INTER_AREA) | |
depth = read_MiDaS_depth(sample['depth_fi'], 3.0, config['output_h'], config['output_w']) | |
mean_loc_depth = depth[depth.shape[0]//2, depth.shape[1]//2] | |
if not(config['load_ply'] is True and os.path.exists(mesh_fi)): | |
vis_photos, vis_depths = sparse_bilateral_filtering(depth.copy(), image.copy(), config, num_iter=config['sparse_iter'], spdb=False) | |
depth = vis_depths[-1] | |
model = None | |
torch.cuda.empty_cache() | |
print("Start Running 3D_Photo ...") | |
print(f"Loading edge model at {time.time()}") | |
depth_edge_model = Inpaint_Edge_Net(init_weights=True) | |
depth_edge_weight = torch.load(config['depth_edge_model_ckpt'], | |
map_location=torch.device(device)) | |
depth_edge_model.load_state_dict(depth_edge_weight) | |
depth_edge_model = depth_edge_model.to(device) | |
depth_edge_model.eval() | |
print(f"Loading depth model at {time.time()}") | |
depth_feat_model = Inpaint_Depth_Net() | |
depth_feat_weight = torch.load(config['depth_feat_model_ckpt'], | |
map_location=torch.device(device)) | |
depth_feat_model.load_state_dict(depth_feat_weight, strict=True) | |
depth_feat_model = depth_feat_model.to(device) | |
depth_feat_model.eval() | |
depth_feat_model = depth_feat_model.to(device) | |
print(f"Loading rgb model at {time.time()}") | |
rgb_model = Inpaint_Color_Net() | |
rgb_feat_weight = torch.load(config['rgb_feat_model_ckpt'], | |
map_location=torch.device(device)) | |
rgb_model.load_state_dict(rgb_feat_weight) | |
rgb_model.eval() | |
rgb_model = rgb_model.to(device) | |
graph = None | |
print(f"Writing depth ply (and basically doing everything) at {time.time()}") | |
rt_info = write_ply(image, | |
depth, | |
sample['int_mtx'], | |
mesh_fi, | |
config, | |
rgb_model, | |
depth_edge_model, | |
depth_edge_model, | |
depth_feat_model) | |
if rt_info is False: | |
continue | |
rgb_model = None | |
color_feat_model = None | |
depth_edge_model = None | |
depth_feat_model = None | |
torch.cuda.empty_cache() | |
if config['save_ply'] is True or config['load_ply'] is True: | |
verts, colors, faces, Height, Width, hFov, vFov = read_ply(mesh_fi) | |
else: | |
verts, colors, faces, Height, Width, hFov, vFov = rt_info | |
print(f"Making video at {time.time()}") | |
videos_poses, video_basename = copy.deepcopy(sample['tgts_poses']), sample['tgt_name'] | |
top = (config.get('original_h') // 2 - sample['int_mtx'][1, 2] * config['output_h']) | |
left = (config.get('original_w') // 2 - sample['int_mtx'][0, 2] * config['output_w']) | |
down, right = top + config['output_h'], left + config['output_w'] | |
border = [int(xx) for xx in [top, down, left, right]] | |
normal_canvas, all_canvas = output_3d_photo(verts.copy(), colors.copy(), faces.copy(), copy.deepcopy(Height), copy.deepcopy(Width), copy.deepcopy(hFov), copy.deepcopy(vFov), | |
copy.deepcopy(sample['tgt_pose']), sample['video_postfix'], copy.deepcopy(sample['ref_pose']), copy.deepcopy(config['video_folder']), | |
image.copy(), copy.deepcopy(sample['int_mtx']), config, image, | |
videos_poses, video_basename, config.get('original_h'), config.get('original_w'), border=border, depth=depth, normal_canvas=normal_canvas, all_canvas=all_canvas, | |
mean_loc_depth=mean_loc_depth) | |
def resizer(input_img, max_img_size=512): | |
width, height = input_img.size | |
long_edge = height if height >= width else width | |
if long_edge > max_img_size: | |
ratio = max_img_size / long_edge | |
resized_width = int(ratio * width) | |
resized_height = int(ratio * height) | |
resized_input_img = input_img.resize((resized_width, resized_height), resample=2) | |
return resized_input_img | |
else: | |
return input_img | |
def main_app(input_img, num_frames, fps): | |
# resize down | |
input_img = resizer(input_img) | |
# Save image in necessary folder for inpainting | |
#img_name = Path(str(uuid.uuid4()) + '.jpg') | |
img_name = Path('sample.jpg') | |
save_folder = Path('image') | |
input_img.save(save_folder/img_name) | |
inpaint(img_name, num_frames, fps) | |
#subprocess.run('ls -l', shell=True) | |
#subprocess.run('ls image -l', shell=True) | |
#subprocess.run('ls video/ -l', shell=True) | |
# Get output video path & return | |
input_img_path = str(save_folder/img_name) | |
out_vid_path = 'video/{0}_circle.mp4'.format(img_name.stem) | |
return out_vid_path | |
video_choices = ['dolly-zoom-in', 'zoom-in', 'circle', 'swing'] | |
gradio_inputs = [gr.inputs.Image(type='pil', label='Input Image'), | |
gr.inputs.Slider(minimum=60, maximum=240, step=1, default=120, label="Number of Frames"), | |
gr.inputs.Slider(minimum=10, maximum=40, step=1, default=20, label="Frames per Second (FPS)")] | |
gradio_outputs = [gr.outputs.Video(label='Output Video')] | |
examples = [ ['moon.jpg'], ['dog.jpg'] ] | |
description="Convert an image into a trajectory-following video. Images are automatically resized down to a max edge of 512. | NOTE: The current runtime for a sample is around 400-700 seconds. Running on a lower number of frames could help! Do be patient as this is on CPU-only, BUT if this space maybe gets a GPU one day, it's already configured to run with GPU-support :) If you have a GPU, feel free to use the author's original repo (linked at the bottom of this path, they have a collab notebook!) You can also run this space/gradio app locally!" | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2004.04727' target='_blank'>3D Photography using Context-aware Layered Depth Inpainting</a> | <a href='https://shihmengli.github.io/3D-Photo-Inpainting/' target='_blank'>Github Project Page</a> | <a href='https://github.com/vt-vl-lab/3d-photo-inpainting' target='_blank'>Github Repo</a></p>" | |
iface = gr.Interface(fn=main_app, inputs=gradio_inputs , outputs=gradio_outputs, examples=examples, | |
title='3D Image Inpainting', | |
description=description, | |
article=article, | |
enable_queue=True) | |
iface.launch(enable_queue=True) |