Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- main.py +61 -0
- pipeline.joblib +3 -0
- requirements.txt +8 -0
main.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import joblib
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
from sklearn.impute import SimpleImputer
|
8 |
+
from sklearn.compose import ColumnTransformer
|
9 |
+
from sklearn.pipeline import Pipeline
|
10 |
+
from sklearn.linear_model import LogisticRegression
|
11 |
+
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
# Load the entire pipeline
|
15 |
+
pipeline_filepath = "pipeline.joblib"
|
16 |
+
pipeline = joblib.load(pipeline_filepath)
|
17 |
+
|
18 |
+
class PatientData(BaseModel):
|
19 |
+
Plasma_glucose : float
|
20 |
+
Blood_Work_Result_1: float
|
21 |
+
Blood_Pressure : float
|
22 |
+
Blood_Work_Result_2 : float
|
23 |
+
Blood_Work_Result_3 : float
|
24 |
+
Body_mass_index : float
|
25 |
+
Blood_Work_Result_4: float
|
26 |
+
Age: float
|
27 |
+
Insurance: int
|
28 |
+
|
29 |
+
@app.get("/")
|
30 |
+
def read_root():
|
31 |
+
explanation = {
|
32 |
+
'message': "Welcome to the Sepsis Prediction App",
|
33 |
+
'description': "This API allows you to predict sepsis based on patient data.",
|
34 |
+
'usage': "Submit a POST request to /predict with patient data to make predictions.",
|
35 |
+
|
36 |
+
}
|
37 |
+
return explanation
|
38 |
+
|
39 |
+
@app.post("/predict")
|
40 |
+
def get_data_from_user(data: PatientData):
|
41 |
+
user_input = data.dict()
|
42 |
+
|
43 |
+
input_df = pd.DataFrame([user_input])
|
44 |
+
|
45 |
+
# Make predictions using the loaded pipeline
|
46 |
+
prediction = pipeline.predict(input_df)
|
47 |
+
probabilities = pipeline.predict_proba(input_df)
|
48 |
+
|
49 |
+
|
50 |
+
probability_of_positive_class = probabilities[0][1]
|
51 |
+
|
52 |
+
# Calculate the prediction
|
53 |
+
sepsis_status = "Positive" if prediction[0] == 1 else "Negative"
|
54 |
+
sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction[0] == 1 else "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
|
55 |
+
|
56 |
+
result = {
|
57 |
+
'predicted_sepsis': sepsis_status,
|
58 |
+
'probability': probability_of_positive_class,
|
59 |
+
'sepsis_explanation': sepsis_explanation
|
60 |
+
}
|
61 |
+
return result
|
pipeline.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74f69ea3c16f9dfa66dd5738523b19ebb4db2c17f0af741730f7a5b24e16a0be
|
3 |
+
size 27955
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pytest
|
2 |
+
scikit-learn
|
3 |
+
fastapi[all]
|
4 |
+
pydantic
|
5 |
+
uvicorn
|
6 |
+
pandas
|
7 |
+
numpy
|
8 |
+
joblib
|