|
import gradio as gr |
|
from fastai.vision.all import * |
|
|
|
|
|
|
|
im = PILImage.create('Cat.jpg') |
|
|
|
categories = ('Dog','Cat') |
|
learn = load_learner('model.pkl') |
|
|
|
def is_cat(x): |
|
return x[0].isupper() |
|
|
|
def classify_image(img): |
|
pred,idx,probs = learn.predict(img) |
|
return dict(zip(categories,map(float,probs))) |
|
|
|
|
|
|
|
image = gr.inputs.Image(shape = (192,192)) |
|
label = gr.outputs.Label() |
|
examples = ['./Cat.jpg','./dog.jpg','./heh.jpg'] |
|
|
|
intf = gr.Interface(fn=classify_image,inputs=image,outputs=label,examples=examples) |
|
intf.launch(inline=False,share=True) |
|
|
|
|
|
|
|
|