File size: 3,711 Bytes
a858bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

import os
import glob
from functools import partial
from tqdm import tqdm, trange
from multiprocessing import Pool
from PIL import Image
import cv2
import mlxu
from natsort import natsorted
import numpy as np
import einops
import torch

from vqlm_demo.inference import MultiProcessInferenceModel
from vqlm_demo.utils import (
    is_video, random_square_crop,
    read_frames_from_dir, read_frames_from_video
)


FLAGS, _ = mlxu.define_flags_with_default(
    checkpoint='',
    input_files='',
    frame_input=False,
    read_file_list='',
    center_crop=1.0,
    n_context_frames=15,
    n_target_frames=1,
    n_workers=8,
    stride=8,
    batch_size=2,
    torch_devices='',
    shuffle=False,
    random_start=True,
    max_examples=0,
)


class VideoDataset(torch.utils.data.Dataset):

    def __init__(self, videos, frame_input=False, n_context_frames=15,
                 n_target_frames=1, stride=1):
        self.videos = videos
        self.frame_input = frame_input
        self.n_context_frames = n_context_frames
        self.n_target_frames = n_target_frames
        self.stride = stride

    def __getitem__(self, index):
        if self.frame_input:
            frames = read_frames_from_dir(
                self.videos[index],
                self.n_context_frames + self.n_target_frames,
                self.stride,
                center_crop=FLAGS.center_crop,
                random_start=FLAGS.random_start,
            )
        else:
            frames = read_frames_from_video(
                self.videos[index],
                self.n_context_frames + self.n_target_frames,
                self.stride,
                center_crop=FLAGS.center_crop,
                random_start=FLAGS.random_start,
            )
        if frames is None:
            return self[np.random.randint(0, len(self))]
        return frames[:self.n_context_frames], frames[self.n_context_frames:]

    def __len__(self):
        return len(self.videos)



def main(_):
    assert FLAGS.checkpoint != ''
    assert FLAGS.read_file_list != '' or FLAGS.input_files != ''

    model = MultiProcessInferenceModel(
        checkpoint=FLAGS.checkpoint,
        torch_devices=FLAGS.torch_devices,
        perplexity_batch_size=FLAGS.batch_size,
    )

    if FLAGS.read_file_list != '':
        with open(FLAGS.read_file_list, 'r') as f:
            videos = [x.strip() for x in f.readlines()]
    else:
        videos = glob.glob(FLAGS.input_files)

    if FLAGS.frame_input:
        videos = [x for x in videos if os.path.isdir(x)]
    else:
        videos = [x for x in videos if is_video(x)]

    if FLAGS.shuffle:
        np.random.shuffle(videos)

    if FLAGS.max_examples > 0:
        videos = videos[:FLAGS.max_examples]

    dataset = VideoDataset(
        videos,
        frame_input=FLAGS.frame_input,
        n_context_frames=FLAGS.n_context_frames,
        n_target_frames=FLAGS.n_target_frames,
        stride=FLAGS.stride
    )
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=FLAGS.batch_size * model.n_processes * 4,
        shuffle=False,
        num_workers=FLAGS.n_workers,
        prefetch_factor=4,
        drop_last=True,
    )

    perplexities = []

    for batch_context_frames, batch_taret_frames in tqdm(dataloader, ncols=0):
        batch_context_frames = batch_context_frames.numpy()
        batch_taret_frames = batch_taret_frames.numpy()
        perplexity = model.compute_perplexity(
            batch_context_frames, batch_taret_frames
        )
        perplexities.append(perplexity)

    perplexities = np.concatenate(perplexities, axis=0)
    print(f'Perplexity: {np.mean(perplexities)}')


if __name__ == '__main__':
    mlxu.run(main)