paraphrasing / app.py
EmTpro01's picture
Create app.py
8b467d6 verified
raw
history blame
1.37 kB
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the merged model
model_name = "EmTpro01/merged-gemma" # Replace with your merged model path
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name) # Default device is CPU
# Streamlit UI
st.title("Text Paraphrasing ")
st.write("Provide a paragraph, and this AI will paraphrase it for you.")
# Input paragraph
paragraph = st.text_area("Enter a paragraph to paraphrase:", height=200)
if st.button("Paraphrase"):
if paragraph.strip():
with st.spinner("Paraphrasing..."):
# Prepare the prompt
alpaca_prompt = f"Below is a paragraph, paraphrase it.\n### paragraph: {paragraph}\n### paraphrased:"
# Tokenize input and move to CPU
inputs = tokenizer(alpaca_prompt, return_tensors="pt")
# Generate paraphrased text
output = model.generate(**inputs, max_new_tokens=200)
paraphrased = tokenizer.decode(output[0], skip_special_tokens=True)
# Extract the paraphrased portion
result = paraphrased.split("### paraphrased:")[1].strip()
st.text_area("Paraphrased Output:", result, height=200)
else:
st.warning("Please enter a paragraph to paraphrase.")