Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load the fine-tuned model and tokenizer | |
model_name = "EmTpro01/llama-3.2-Code-Generator" # Replace with your Hugging Face model name | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Define the prediction function | |
def generate_code(prompt): | |
# Tokenize the input | |
inputs = tokenizer(prompt, return_tensors="pt") | |
# Generate code | |
outputs = model.generate(inputs["input_ids"], max_length=200, num_return_sequences=1) | |
# Decode the output | |
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_code | |
# Set up Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Code Generation with Fine-Tuned Llama Model") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Input Prompt", placeholder="Enter a prompt for code generation...") | |
output = gr.Textbox(label="Generated Code") | |
generate_button = gr.Button("Generate Code") | |
generate_button.click(generate_code, inputs=prompt, outputs=output) | |
# Launch the interface | |
demo.launch() | |