Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import gradio as gr | |
from PIL import Image | |
def classify_img(im): | |
im = Image.fromarray(im.astype('uint8'), 'RGB') | |
ans = image_cla(im) | |
labels = {v["label"]: v["score"] for v in ans} | |
return labels | |
def voice2text(audio): | |
text = voice_cla(audio)["text"] | |
return text | |
def text2sentiment(text): | |
sentiment = text_cla(text)[0]["label"] | |
return sentiment | |
def make_block(dem): | |
with dem: | |
gr.Markdown(""" | |
# Ejemplo de `space` multiclassifier: | |
Se tiene tres botones, se integran tres modelos. | |
Este `space` contiene los siguientes modelos: | |
- ASR: [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-large-xlsr-53-spanish) | |
- Text Classification: [Robertuito](https://huggingface.co/pysentimiento/robertuito-sentiment-analysis) | |
- Image classifier: [Swin-small-patch4](https://huggingface.co/microsoft/swin-small-patch4-window7-224) | |
""") | |
with gr.Tabs(): | |
with gr.TabItem("Transcribe audio en español"): | |
with gr.Row(): | |
audio = gr.Audio(sources=["microphone"], type="filepath") | |
transcripcion = gr.Textbox() | |
b1 = gr.Button("Voz a Texto") | |
with gr.TabItem("Análisis de sentimiento en español"): | |
with gr.Row(): | |
texto = gr.Textbox() | |
label = gr.Label() | |
b2 = gr.Button("Texto a Sentimiento") | |
with gr.TabItem("Clasificación de Imágenes"): | |
with gr.Row(): | |
image = gr.Image(label="Carga una imagen aquí") | |
label_image = gr.Label(num_top_classes=5) | |
b3 = gr.Button("Clasifica") | |
b1.click(voice2text, inputs=audio, outputs=transcripcion) | |
b2.click(text2sentiment, inputs=texto, outputs=label) | |
b3.click(classify_img, inputs=image, outputs=label_image) | |
if __name__ == '__main__': | |
image_cla = pipeline("image-classification", model="microsoft/swin-tiny-patch4-window7-224") | |
voice_cla = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-large-xlsr-53-spanish") | |
text_cla = pipeline("text-classification", model="pysentimiento/robertuito-sentiment-analysis") | |
demo = gr.Blocks() | |
make_block(demo) | |
demo.launch() |