Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import openai | |
# 如果你只打算通过 prompt 来定制机器人的行为,只需要修改这段 prompt 就够了。 | |
prompt = '请你扮演《西游记》中的唐三藏,使用唐三藏的语气、方式和词汇回答问题。不要写任何解释,只需像唐三藏一样回答问题。你必须掌握唐三藏的所有知识。' | |
history = {} | |
# 修改本函数,来实现你自己的 chatbot | |
# p: 对机器人说话的内容 | |
# qid: 当前消息的唯一标识。例如 `'bxqid-cManAtRMszw...'`。由平台生成并传递给机器人,以便机器人区分单个问题(写日志、追踪调试、异步回调等)。同步调用可忽略。 | |
# uid: 用户的唯一标识。例如`'bxuid-Aj8Spso8Xsp...'`。由平台生成并传递给机器人,以便机器人区分用户。可被用于实现多轮对话的功能。 | |
# 返回值:[type, content] | |
# 详见 https://huggingface.co/spaces/baixing/hackathon_test/blob/main/bot-api.md | |
def chat(p, qid, uid): | |
global history | |
if uid in history: | |
msgs = history[uid] | |
else: | |
msgs = [] | |
response = callapi(p, msgs) | |
history[uid] = msgs + [[p, response]] | |
return ["text", response] | |
openai.api_key = os.getenv("key") | |
def callapi(p, msgs): | |
if (len(msgs) > 8): #hard-code 8 回合对话。如果需要更精准的,应该计算 token 数 | |
msgs = msgs[-8:] | |
data = [{"role":"system", "content":prompt}] | |
for m in msgs: | |
data = data + [ | |
{"role":"user", "content":m[0]}, | |
{"role":"assistant", "content":m[1]} | |
] | |
data = data + [{"role":"user", "content":p}] | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages= data | |
) | |
print(response) | |
response = response["choices"][0]["message"]["content"] | |
while response.startswith("\n"): | |
response = response[1:] | |
return response | |
iface = gr.Interface(fn=chat, | |
inputs=["text", "text", "text"], | |
outputs=["text", "text"], | |
description="""这是一个极其简单的示范程序,用唐三藏的语气来和你对话。 | |
注意:duplicate 本项目后,需要将你自己的 openai apikey 设置到 settings 的 Repository Secrets 里,否则运行会报错。[了解详情](https://huggingface.co/spaces/baixing/hackathon_chatbot_openai_api/blob/main/%E6%B7%BB%E5%8A%A0%20secret%20%E7%9A%84%E6%96%B9%E6%B3%95.jpg) | |
[对话测试](https://huggingface.co/spaces/BaixingAI/hackathon_test) [参考文档](https://huggingface.co/spaces/baixing/hackathon_test/blob/main/bot-api.md) [Q & A](https://huggingface.co/spaces/baixing/hackathon_test/blob/main/qna.md) | |
""") | |
iface.launch() |