Spaces:
Runtime error
Runtime error
import os | |
import sys | |
os.system('pip install gradio==2.3.0a0') | |
import gradio as gr | |
os.system('git clone https://github.com/openai/CLIP') | |
os.system('git clone https://github.com/openai/guided-diffusion') | |
os.system('pip install -e ./CLIP') | |
os.system('pip install -e ./guided-diffusion') | |
os.system('pip install kornia') | |
os.system("curl -OL 'https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt'") | |
# Imports | |
import math | |
import sys | |
#from IPython import display | |
from kornia import augmentation, filters | |
from PIL import Image | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torchvision import transforms | |
from torchvision.transforms import functional as TF | |
from tqdm.notebook import tqdm | |
sys.path.append('./CLIP') | |
sys.path.append('./guided-diffusion') | |
import clip | |
from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults | |
# Model settings | |
model_config = model_and_diffusion_defaults() | |
model_config.update({ | |
'attention_resolutions': '32, 16, 8', | |
'class_cond': False, | |
'diffusion_steps': 1000, | |
'rescale_timesteps': False, | |
'timestep_respacing': '300', | |
'image_size': 256, | |
'learn_sigma': True, | |
'noise_schedule': 'linear', | |
'num_channels': 256, | |
'num_head_channels': 64, | |
'num_res_blocks': 2, | |
'resblock_updown': True, | |
'use_fp16': True, | |
'use_scale_shift_norm': True, | |
}) | |
# Load models and define necessary functions | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
print('Using device:', device) | |
model, diffusion = create_model_and_diffusion(**model_config) | |
model.load_state_dict(torch.load('256x256_diffusion_uncond.pt', map_location='cpu')) | |
model.eval().requires_grad_(False).to(device) | |
if model_config['use_fp16']: | |
model.convert_to_fp16() | |
clip_model = clip.load('ViT-B/16', jit=False)[0].eval().requires_grad_(False).to(device) | |
clip_size = clip_model.visual.input_resolution | |
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], | |
std=[0.26862954, 0.26130258, 0.27577711]) | |
def spherical_dist_loss(x, y): | |
x = F.normalize(x, dim=-1) | |
y = F.normalize(y, dim=-1) | |
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) | |
def inference(text): | |
prompt = text | |
batch_size = 1 | |
clip_guidance_scale = 2750 | |
seed = 0 | |
if seed is not None: | |
torch.manual_seed(seed) | |
text_embed = clip_model.encode_text(clip.tokenize(prompt).to(device)).float() | |
translate_by = 8 / clip_size | |
if translate_by: | |
aug = augmentation.RandomAffine(0, (translate_by, translate_by), | |
padding_mode='border', p=1) | |
else: | |
aug = nn.Identity() | |
cur_t = diffusion.num_timesteps - 1 | |
def cond_fn(x, t, y=None): | |
with torch.enable_grad(): | |
x_in = x.detach().requires_grad_() | |
sigma = min(24, diffusion.sqrt_recipm1_alphas_cumprod[cur_t] / 4) | |
kernel_size = max(math.ceil((sigma * 6 + 1) / 2) * 2 - 1, 3) | |
x_blur = filters.gaussian_blur2d(x_in, (kernel_size, kernel_size), (sigma, sigma)) | |
clip_in = F.interpolate(aug(x_blur.add(1).div(2)), (clip_size, clip_size), | |
mode='bilinear', align_corners=False) | |
image_embed = clip_model.encode_image(normalize(clip_in)).float() | |
losses = spherical_dist_loss(image_embed, text_embed) | |
grad = -torch.autograd.grad(losses.sum(), x_in)[0] | |
return grad * clip_guidance_scale | |
samples = diffusion.p_sample_loop_progressive( | |
model, | |
(batch_size, 3, model_config['image_size'], model_config['image_size']), | |
clip_denoised=True, | |
model_kwargs={}, | |
cond_fn=cond_fn, | |
progress=True, | |
) | |
for i, sample in enumerate(samples): | |
cur_t -= 1 | |
if i % 100 == 0 or cur_t == -1: | |
print() | |
for j, image in enumerate(sample['pred_xstart']): | |
filename = f'progress_{j:05}.png' | |
TF.to_pil_image(image.add(1).div(2).clamp(0, 1)).save(filename) | |
tqdm.write(f'Step {i}, output {j}:') | |
#display.display(display.Image(filename)) | |
return 'progress_00000.png' | |
title = "CLIP guided Diffusion" | |
description = "Gradio demo for CLIP guided Diffusion. To use it, simply upload your text, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'>By Katherine Crowson (https://github.com/crowsonkb, https://twitter.com/RiversHaveWings). It uses OpenAI's 256x256 unconditional ImageNet diffusion model (https://github.com/openai/guided-diffusion) together with CLIP (https://github.com/openai/CLIP) to connect text prompts with images. | <a href='https://colab.research.google.com/drive/1ED6_MYVXTApBHzQObUPaaMolgf9hZOOF' target='_blank'>Colab</a></p>" | |
iface = gr.Interface(inference, inputs="text", outputs="image", title=title, description=description, article=article, examples=[["coral reef city by artistation artists"]], | |
enable_queue=True) | |
iface.launch() |