Spaces:
Sleeping
Sleeping
File size: 10,272 Bytes
47aeb66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
"""
File: app_utils.py
Author: Elena Ryumina and Dmitry Ryumin
Description: This module contains utility functions for facial expression recognition application.
License: MIT License
"""
import torch
import numpy as np
import mediapipe as mp
import pandas as pd
from PIL import Image
import cv2
# Importing necessary components for the Gradio app
from app.model import (
pth_model_static,
pth_model_dynamic,
activations,
audio_processor,
audio_model,
device
)
from app.utils import (
convert_mp4_to_mp3,
pad_wav,
pad_wav_zeros,
get_box,
pth_processing,
convert_webm_to_mp4,
get_evenly_spaced_frame_indices,
get_c_expr_db_pred
)
from app.config import DICT_EMO_VIDEO, AV_WEIGHTS, NAME_EMO_AUDIO, DICT_PRED, config_data
from app.plot import display_frame_info, plot_images
from collections import Counter
mp_face_mesh = mp.solutions.face_mesh
class EmotionRecognition:
def __init__(
self,
step=2,
window=4,
sr=16000,
save_path="",
padding="",
):
self.save_path = save_path
self.step = step
self.window = window
self.sr = sr
self.padding = padding
def predict_emotion(self, path, frame_indices, fps):
prob, plt = self.load_audio_features(path, frame_indices, fps)
return prob, plt
def load_audio_features(self, path, frame_indices, fps):
window_a = self.window * self.sr
step_a = int(self.step * self.sr)
wav, audio_plt = convert_mp4_to_mp3(path, frame_indices, fps, self.sr)
probs = []
framess = []
for start_a in range(0, len(wav) + 1, step_a):
end_a = min(start_a + window_a, len(wav))
a_fss_chunk = wav[start_a:end_a]
if self.padding == "mean" or self.padding == "constant":
a_fss = pad_wav_zeros(a_fss_chunk, window_a, mode=self.padding)
elif self.padding == "repeat":
a_fss = pad_wav(a_fss_chunk, window_a)
a_fss = torch.unsqueeze(a_fss, 0)
a_fss = audio_processor(a_fss, sampling_rate=self.sr)
a_fss = a_fss["input_values"][0]
a_fss = torch.from_numpy(a_fss)
with torch.no_grad():
prob = audio_model(a_fss.to(device))
prob = prob.cpu().numpy()
frames = [
str(i).zfill(6) + ".jpg"
for i in range(
round(start_a / self.sr * fps), round(end_a / self.sr * fps + 1)
)
]
probs.extend([prob] * len(frames))
framess.extend(frames)
if len(probs[0]) == 7:
emo_ABAW = NAME_EMO_AUDIO[:-1]
else:
emo_ABAW = NAME_EMO_AUDIO
df = pd.DataFrame(np.array(probs), columns=emo_ABAW)
df["frames"] = framess
return df, audio_plt
def preprocess_audio_and_predict(
path_video="",
save_path="src/pred_results/C-EXPR-DB",
frame_indices=[],
fps=25,
step=0.5,
padding="mean",
window=4,
sr=16000,
):
audio_ER = EmotionRecognition(
step=step,
window=window,
sr=sr,
save_path=save_path,
padding=padding,
)
df_pred, audio_plt = audio_ER.predict_emotion(path_video, frame_indices, fps)
return df_pred, audio_plt
def preprocess_video_and_predict(video):
if video:
if video.split('.')[-1] == 'webm':
video = convert_webm_to_mp4(video)
cap = cv2.VideoCapture(video)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_indices = get_evenly_spaced_frame_indices(total_frames, 9)
df_probs_audio, audio_plt = preprocess_audio_and_predict(
path_video=video,
frame_indices=frame_indices,
fps=fps,
step=config_data.AUDIO_STEP,
padding="mean",
save_path="",
window=4,
sr=16000,
)
lstm_features = []
count_frame = 1
count_face = 0
probs_dynamic = []
probs_static = []
frames = []
last_output = None
cur_face = None
faces = []
zeros = np.zeros((1, 7))
with torch.no_grad():
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
_, frame = cap.read()
if frame is None: break
frame_copy = frame.copy()
frame_copy.flags.writeable = False
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_copy)
frame_copy.flags.writeable = True
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame_copy[startY:endY, startX: endX]
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
cur_face_copy = pth_processing(Image.fromarray(cur_face))
prediction = torch.nn.functional.softmax(pth_model_static(cur_face_copy.to(device)), dim=1)
features = torch.nn.functional.relu(activations['features']).detach().cpu().numpy()
output_s = prediction.clone()
output_s = output_s.detach().cpu().numpy()
if len(lstm_features) == 0:
lstm_features = [features]*10
else:
lstm_features = lstm_features[1:] + [features]
lstm_f = torch.from_numpy(np.vstack(lstm_features))
lstm_f = torch.unsqueeze(lstm_f, 0)
output_d = pth_model_dynamic(lstm_f.to(device)).detach().cpu().numpy()
last_output = output_d
if count_face == 0:
count_face += 1
else:
if last_output is not None:
output_d = last_output
elif last_output is None:
output_d = zeros
probs_static.append(output_s[0])
probs_dynamic.append(output_d[0])
frames.append(count_frame)
else:
lstm_features = []
if last_output is not None:
probs_static.append(probs_static[-1])
probs_dynamic.append(probs_dynamic[-1])
frames.append(count_frame)
elif last_output is None:
probs_static.append(zeros[0])
probs_dynamic.append(zeros[0])
frames.append(count_frame)
if cur_face is not None:
if count_frame-1 in frame_indices:
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
cur_face = display_frame_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
faces.append(cur_face)
count_frame += 1
if count_face != 0:
count_face += 1
img_plt = plot_images(faces)
df_dynamic = pd.DataFrame(
np.array(probs_dynamic), columns=list(DICT_EMO_VIDEO.values())
)
df_static = pd.DataFrame(
np.array(probs_static), columns=list(DICT_EMO_VIDEO.values())
)
df, pred_plt = get_c_expr_db_pred(
stat_df=df_static,
dyn_df=df_dynamic,
audio_df=df_probs_audio,
name_video='',
weights_1=AV_WEIGHTS,
frame_indices=frame_indices,
)
av_pred = df['Audio-visual fusion'].tolist()
states = ['negative', 'neutral', 'positive']
dict_av_pred = Counter(av_pred)
count_states = np.zeros(3)
for k, v in dict_av_pred.items():
if k in [0]:
count_states[1] += v
elif k in [4, 6, 8, 18]:
count_states[2] += v
else:
count_states[0] += v
state_percent = count_states/np.sum(count_states)
# if np.argmax(state_percent) in [0,2]:
# text1 = "The audio-visual model predicts that a person mostly experiences {} ({:.2f}%) emotions. ".format(states[np.argmax(state_percent)], np.max(state_percent)*100)
# else:
text1 = "The audio-visual model predicts that a person is mostly in {} ({:.2f}%) state. ".format(states[np.argmax(state_percent)], np.max(state_percent)*100)
top_three = dict_av_pred.most_common(3)
top_three_text = "Predictions of the three most probable emotions: "
for index, count in top_three:
percentage = (count / np.sum(count_states)) * 100
top_three_text += f"{DICT_PRED[index]} ({percentage:.2f}%), "
top_three_text = top_three_text.rstrip(", ") + "."
df.to_csv(video.split('.')[0] + '.csv', index=False)
return img_plt, audio_plt, pred_plt, text1+top_three_text, video, video.split('.')[0] + '.csv'
else:
return None, None, None, None, None, None |