Elegbede's picture
Update app.py
ccefb8e
import gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
import numpy as np
from PIL import Image
import io
def predict_input_image(img):
img = img/255
img = tf.image.resize(img, [224, 224])
img = np.expand_dims(img, axis=0)
my_model = load_model('chest_model.h5')
# Set a threshold for binary classification
threshold = 0.7
# Make predictions using your model
predictions = my_model.predict(img)
# Convert predictions to binary (0 or 1) based on the threshold
binary_prediction = 'Pneumonia Detected' if predictions[0][0] > threshold else 'No Pneumonia Detected'
# Return the binary prediction
return binary_prediction
# Define Gradio interface
iface = gr.Interface(
fn=predict_input_image,
inputs=gr.Image(),
outputs='text',
allow_flagging = 'manual',
flagging_dir = 'Elegbede/Pneumonia_Detection/flagged',
examples= [
['Pneumonia_01.jpeg'],
['Pneumonia_02.jpeg'],
['Pneumonia_03.jpeg'],
['Normal_01.jpeg'],
['Normal_02.jpeg'],
['Normal_03.jpeg']
]
)
# Launch the interface
iface.launch()