Updated app with config and audiences
Browse files
app.py
CHANGED
@@ -136,7 +136,17 @@ def answer_user(message,history):
|
|
136 |
return message, history + [[message, None]]
|
137 |
|
138 |
|
139 |
-
def answer_bot(message,history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
# history_langchain_format = []
|
141 |
# for human, ai in history:
|
142 |
# history_langchain_format.append(HumanMessage(content=human))
|
@@ -144,7 +154,7 @@ def answer_bot(message,history):
|
|
144 |
# history_langchain_format.append(HumanMessage(content=message)
|
145 |
# for next_token, content in stream(message):
|
146 |
# yield(content)
|
147 |
-
output = chain({"query":message,"audience":
|
148 |
question = output["question"]
|
149 |
sources = output["source_documents"]
|
150 |
|
@@ -337,7 +347,7 @@ with gr.Blocks(title="π Climate Q&A", css="style.css", theme=theme) as demo:
|
|
337 |
with gr.Row():
|
338 |
with gr.Column(scale=2):
|
339 |
# state = gr.State([system_template])
|
340 |
-
bot = gr.Chatbot(height=400)
|
341 |
|
342 |
with gr.Row():
|
343 |
with gr.Column(scale = 7):
|
@@ -388,32 +398,35 @@ with gr.Blocks(title="π Climate Q&A", css="style.css", theme=theme) as demo:
|
|
388 |
|
389 |
with gr.Column(scale=1, variant="panel"):
|
390 |
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
# )
|
402 |
|
403 |
-
gr.Markdown("### Sources")
|
404 |
-
sources_textbox = gr.Markdown(show_label=False, elem_id="sources-textbox")
|
405 |
|
406 |
# textbox.submit(predict_climateqa,[textbox,bot],[None,bot,sources_textbox])
|
407 |
|
408 |
textbox.submit(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
|
409 |
-
answer_bot, [textbox,bot], [textbox,bot,sources_textbox]
|
410 |
)
|
411 |
examples_hidden.change(answer_user, [examples_hidden, bot], [textbox, bot], queue=False).then(
|
412 |
-
answer_bot, [textbox,bot], [textbox,bot,sources_textbox]
|
413 |
)
|
414 |
|
415 |
submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
|
416 |
-
answer_bot, [textbox,bot], [textbox,bot,sources_textbox]
|
417 |
)
|
418 |
|
419 |
|
@@ -448,12 +461,6 @@ with gr.Blocks(title="π Climate Q&A", css="style.css", theme=theme) as demo:
|
|
448 |
</div>
|
449 |
ClimateQ&A harnesses modern OCR techniques to parse and preprocess IPCC reports. By leveraging state-of-the-art question-answering algorithms, <i>ClimateQ&A is able to sift through the extensive collection of climate scientific reports and identify relevant passages in response to user inquiries</i>. Furthermore, the integration of the ChatGPT API allows ClimateQ&A to present complex data in a user-friendly manner, summarizing key points and facilitating communication of climate science to a wider audience.
|
450 |
</div>
|
451 |
-
|
452 |
-
<div class="warning-box">
|
453 |
-
Version 0.2-beta - This tool is under active development
|
454 |
-
</div>
|
455 |
-
|
456 |
-
|
457 |
"""
|
458 |
)
|
459 |
|
@@ -595,6 +602,7 @@ Or around 2 to 4 times more than a typical Google search.
|
|
595 |
- Hugging Face version is finally up to date
|
596 |
- Switched all python code to langchain codebase for cleaner code, easier maintenance and future features
|
597 |
- Updated GPT model to August version
|
|
|
598 |
|
599 |
##### v1.0.0 - *2023-05-11*
|
600 |
- First version of clean interface on https://climateqa.com
|
|
|
136 |
return message, history + [[message, None]]
|
137 |
|
138 |
|
139 |
+
def answer_bot(message,history,audience):
|
140 |
+
|
141 |
+
if audience == "Children":
|
142 |
+
audience_prompt = audience_prompts["children"]
|
143 |
+
elif audience == "General public":
|
144 |
+
audience_prompt = audience_prompts["general"]
|
145 |
+
elif audience == "Experts":
|
146 |
+
audience_prompt = audience_prompts["expert"]
|
147 |
+
else:
|
148 |
+
audience_prompt = audience_prompts["expert"]
|
149 |
+
|
150 |
# history_langchain_format = []
|
151 |
# for human, ai in history:
|
152 |
# history_langchain_format.append(HumanMessage(content=human))
|
|
|
154 |
# history_langchain_format.append(HumanMessage(content=message)
|
155 |
# for next_token, content in stream(message):
|
156 |
# yield(content)
|
157 |
+
output = chain({"query":message,"audience":audience_prompt})
|
158 |
question = output["question"]
|
159 |
sources = output["source_documents"]
|
160 |
|
|
|
347 |
with gr.Row():
|
348 |
with gr.Column(scale=2):
|
349 |
# state = gr.State([system_template])
|
350 |
+
bot = gr.Chatbot(height=400,show_copy_button=True,show_label = False)
|
351 |
|
352 |
with gr.Row():
|
353 |
with gr.Column(scale = 7):
|
|
|
398 |
|
399 |
with gr.Column(scale=1, variant="panel"):
|
400 |
|
401 |
+
with gr.Tab("π Citations"):
|
402 |
+
sources_textbox = gr.Markdown(show_label=False, elem_id="sources-textbox")
|
403 |
+
|
404 |
+
with gr.Tab("βοΈ Configuration"):
|
405 |
+
|
406 |
+
gr.Markdown("Reminder: You can talk in any language, ClimateQ&A is multi-lingual!")
|
407 |
+
|
408 |
+
dropdown_sources = gr.CheckboxGroup(
|
409 |
+
["IPCC", "IPBES"],
|
410 |
+
label="Select reports",
|
411 |
+
)
|
412 |
|
413 |
+
dropdown_audience = gr.Dropdown(
|
414 |
+
["Children","General public","Experts"],
|
415 |
+
label="Select audience",
|
416 |
+
)
|
|
|
417 |
|
|
|
|
|
418 |
|
419 |
# textbox.submit(predict_climateqa,[textbox,bot],[None,bot,sources_textbox])
|
420 |
|
421 |
textbox.submit(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
|
422 |
+
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
423 |
)
|
424 |
examples_hidden.change(answer_user, [examples_hidden, bot], [textbox, bot], queue=False).then(
|
425 |
+
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
426 |
)
|
427 |
|
428 |
submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
|
429 |
+
answer_bot, [textbox,bot,dropdown_audience], [textbox,bot,sources_textbox]
|
430 |
)
|
431 |
|
432 |
|
|
|
461 |
</div>
|
462 |
ClimateQ&A harnesses modern OCR techniques to parse and preprocess IPCC reports. By leveraging state-of-the-art question-answering algorithms, <i>ClimateQ&A is able to sift through the extensive collection of climate scientific reports and identify relevant passages in response to user inquiries</i>. Furthermore, the integration of the ChatGPT API allows ClimateQ&A to present complex data in a user-friendly manner, summarizing key points and facilitating communication of climate science to a wider audience.
|
463 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
"""
|
465 |
)
|
466 |
|
|
|
602 |
- Hugging Face version is finally up to date
|
603 |
- Switched all python code to langchain codebase for cleaner code, easier maintenance and future features
|
604 |
- Updated GPT model to August version
|
605 |
+
- Use of HuggingFace embed on https://climateqa.com to avoid demultiplying deployments
|
606 |
|
607 |
##### v1.0.0 - *2023-05-11*
|
608 |
- First version of clean interface on https://climateqa.com
|
style.css
CHANGED
@@ -161,7 +161,12 @@ label > span{
|
|
161 |
z-index: 10;
|
162 |
}
|
163 |
*/
|
164 |
-
|
165 |
label.selected{
|
166 |
background:none !important;
|
167 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
161 |
z-index: 10;
|
162 |
}
|
163 |
*/
|
164 |
+
|
165 |
label.selected{
|
166 |
background:none !important;
|
167 |
+
}
|
168 |
+
|
169 |
+
div#sources-textbox{
|
170 |
+
height:100vh;
|
171 |
+
overflow-y: auto;
|
172 |
+
}
|