NinaAchache commited on
Commit
6a89c2d
·
1 Parent(s): fd3331f

Correct path

Browse files
Files changed (1) hide show
  1. app.py +15 -15
app.py CHANGED
@@ -5,18 +5,17 @@ from haystack.nodes import EmbeddingRetriever
5
  import numpy as np
6
  import openai
7
 
8
- classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
 
 
 
9
 
 
10
  system_template = {
11
  "role": "system",
12
- "content": "You have been a climate change expert for 30 years. You answer questions about climate change in an educationnal and concise manner.",
13
  }
14
 
15
-
16
- document_store = FAISSDocumentStore.load(
17
- index_path=f"./documents/climate_gpt.faiss",
18
- config_path=f"./documents/climate_gpt.json",
19
- )
20
  dense = EmbeddingRetriever(
21
  document_store=document_store,
22
  embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
@@ -48,9 +47,11 @@ def gen_conv(query: str, history=[system_template], ipcc=True):
48
  if retrieve:
49
  docs = dense.retrieve(query=query, top_k=5)
50
  sources = "\n\n".join(
51
- ["If relevant, use those extracts from IPCC reports in your answer"]
 
 
52
  + [
53
- f"{d.meta['path']} Page {d.meta['page_id']} paragraph {d.meta['paragraph_id']}:\n{d.content}"
54
  for d in docs
55
  ]
56
  )
@@ -65,19 +66,18 @@ def gen_conv(query: str, history=[system_template], ipcc=True):
65
 
66
  if retrieve:
67
  messages.pop()
68
- answer = "(top 5 documents retrieved) " + answer
69
  sources = "\n\n".join(
70
- f"{d.meta['path']} Page {d.meta['page_id']} paragraph {d.meta['paragraph_id']}:\n{d.content[:100]} [...]"
71
  for d in docs
72
  )
73
-
74
  messages.append({"role": "assistant", "content": answer})
75
-
76
  gradio_format = make_pairs([a["content"] for a in messages[1:]])
77
 
78
  return gradio_format, messages, sources
79
 
80
 
 
81
  def connect(text):
82
  openai.api_key = text
83
  return "You're all set"
@@ -92,10 +92,9 @@ with gr.Blocks(title="Eki IPCC Explorer") as demo:
92
  result = gr.Textbox(label="Connection")
93
 
94
  connect_btn.click(connect, inputs=api_key, outputs=result, api_name="Connection")
95
-
96
  gr.Markdown(
97
  """
98
- # Ask me anything, I'm an IPCC report
99
  """
100
  )
101
 
@@ -121,3 +120,4 @@ with gr.Blocks(title="Eki IPCC Explorer") as demo:
121
  )
122
 
123
  demo.launch(share=True)
 
 
5
  import numpy as np
6
  import openai
7
 
8
+ document_store = FAISSDocumentStore.load(
9
+ index_path=f"./documents/climate_gpt.faiss",
10
+ config_path=f"./documents/climate_gpt.json",
11
+ )
12
 
13
+ classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
14
  system_template = {
15
  "role": "system",
16
+ "content": "You have been a climate change expert for 30 years. You answer questions about climate change in an educationnal and concise manner. Whenever possible your answers are backed up by facts and numbers from scientific reports.",
17
  }
18
 
 
 
 
 
 
19
  dense = EmbeddingRetriever(
20
  document_store=document_store,
21
  embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
 
47
  if retrieve:
48
  docs = dense.retrieve(query=query, top_k=5)
49
  sources = "\n\n".join(
50
+ [
51
+ "If relevant, use those extracts in your answer and give the reference of the information you used."
52
+ ]
53
  + [
54
+ f"{d.meta['file_name']} Page {d.meta['page_number']}\n{d.content}"
55
  for d in docs
56
  ]
57
  )
 
66
 
67
  if retrieve:
68
  messages.pop()
69
+ # answer = "(top 5 documents retrieved) " + answer
70
  sources = "\n\n".join(
71
+ f"{d.meta['file_name']} Page {d.meta['page_number']}:\n{d.content}"
72
  for d in docs
73
  )
 
74
  messages.append({"role": "assistant", "content": answer})
 
75
  gradio_format = make_pairs([a["content"] for a in messages[1:]])
76
 
77
  return gradio_format, messages, sources
78
 
79
 
80
+ # Gradio
81
  def connect(text):
82
  openai.api_key = text
83
  return "You're all set"
 
92
  result = gr.Textbox(label="Connection")
93
 
94
  connect_btn.click(connect, inputs=api_key, outputs=result, api_name="Connection")
 
95
  gr.Markdown(
96
  """
97
+ # Ask me anything, I'm a climate expert
98
  """
99
  )
100
 
 
120
  )
121
 
122
  demo.launch(share=True)
123
+