File size: 10,778 Bytes
088e816 76603df 088e816 094ee34 088e816 094ee34 088e816 094ee34 088e816 094ee34 76603df 088e816 6b43c86 094ee34 6b43c86 088e816 d14568c 088e816 d14568c 088e816 d396732 c3b815e d396732 c3b815e d396732 c3b815e d396732 c3b815e d14568c d5c9c65 12c9afe d14568c 088e816 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import re
from collections import defaultdict
from climateqa.utils import get_image_from_azure_blob_storage
from climateqa.engine.chains.prompts import audience_prompts
from PIL import Image
from io import BytesIO
import base64
def make_pairs(lst:list)->list:
"""from a list of even lenght, make tupple pairs"""
return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]
def serialize_docs(docs:list)->list:
new_docs = []
for doc in docs:
new_doc = {}
new_doc["page_content"] = doc.page_content
new_doc["metadata"] = doc.metadata
new_docs.append(new_doc)
return new_docs
def parse_output_llm_with_sources(output:str)->str:
# Split the content into a list of text and "[Doc X]" references
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
parts = []
for part in content_parts:
if part.startswith("Doc"):
subparts = part.split(",")
subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>""" for subpart in subparts]
parts.append("".join(subparts))
else:
parts.append(part)
content_parts = "".join(parts)
return content_parts
def process_figures(docs:list)->tuple:
gallery=[]
used_figures =[]
figures = '<div class="figures-container"><p></p> </div>'
docs_figures = [d for d in docs if d.metadata["chunk_type"] == "image"]
for i, doc in enumerate(docs_figures):
if doc.metadata["chunk_type"] == "image":
if doc.metadata["figure_code"] != "N/A":
title = f"{doc.metadata['figure_code']} - {doc.metadata['short_name']}"
else:
title = f"{doc.metadata['short_name']}"
if title not in used_figures:
used_figures.append(title)
try:
key = f"Image {i+1}"
image_path = doc.metadata["image_path"].split("documents/")[1]
img = get_image_from_azure_blob_storage(image_path)
# Convert the image to a byte buffer
buffered = BytesIO()
max_image_length = 500
img_resized = img.resize((max_image_length, int(max_image_length * img.size[1]/img.size[0])))
img_resized.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
figures = figures + make_html_figure_sources(doc, i, img_str)
gallery.append(img)
except Exception as e:
print(f"Skipped adding image {i} because of {e}")
return figures, gallery
def generate_html_graphs(graphs:list)->str:
# Organize graphs by category
categories = defaultdict(list)
for graph in graphs:
category = graph['metadata']['category']
categories[category].append(graph['embedding'])
# Begin constructing the HTML
html_code = '''
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Graphs by Category</title>
<style>
.tab-content {
display: none;
}
.tab-content.active {
display: block;
}
.tabs {
margin-bottom: 20px;
}
.tab-button {
background-color: #ddd;
border: none;
padding: 10px 20px;
cursor: pointer;
margin-right: 5px;
}
.tab-button.active {
background-color: #ccc;
}
</style>
<script>
function showTab(tabId) {
var contents = document.getElementsByClassName('tab-content');
var buttons = document.getElementsByClassName('tab-button');
for (var i = 0; i < contents.length; i++) {
contents[i].classList.remove('active');
buttons[i].classList.remove('active');
}
document.getElementById(tabId).classList.add('active');
document.querySelector('button[data-tab="'+tabId+'"]').classList.add('active');
}
</script>
</head>
<body>
<div class="tabs">
'''
# Add buttons for each category
for i, category in enumerate(categories.keys()):
active_class = 'active' if i == 0 else ''
html_code += f'<button class="tab-button {active_class}" onclick="showTab(\'tab-{i}\')" data-tab="tab-{i}">{category}</button>'
html_code += '</div>'
# Add content for each category
for i, (category, embeds) in enumerate(categories.items()):
active_class = 'active' if i == 0 else ''
html_code += f'<div id="tab-{i}" class="tab-content {active_class}">'
for embed in embeds:
html_code += embed
html_code += '</div>'
html_code += '''
</body>
</html>
'''
return html_code
def make_html_source(source,i):
meta = source.metadata
# content = source.page_content.split(":",1)[1].strip()
content = source.page_content.strip()
toc_levels = []
for j in range(2):
level = meta[f"toc_level{j}"]
if level != "N/A":
toc_levels.append(level)
else:
break
toc_levels = " > ".join(toc_levels)
if len(toc_levels) > 0:
name = f"<b>{toc_levels}</b><br/>{meta['name']}"
else:
name = meta['name']
score = meta['reranking_score']
if score > 0.8:
color = "score-green"
elif score > 0.5:
color = "score-orange"
else:
color = "score-red"
relevancy_score = f"<p class=relevancy-score>Relevancy score: <span class='{color}'>{score:.1%}</span></p>"
if meta["chunk_type"] == "text":
card = f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['short_name']} - Page {int(meta['page_number'])}</h2>
<p>{content}</p>
{relevancy_score}
</div>
<div class="card-footer">
<span>{name}</span>
<a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">π</span>
</a>
</div>
</div>
"""
else:
if meta["figure_code"] != "N/A":
title = f"{meta['figure_code']} - {meta['short_name']}"
else:
title = f"{meta['short_name']}"
card = f"""
<div class="card card-image">
<div class="card-content">
<h2>Image {i} - {title} - Page {int(meta['page_number'])}</h2>
<p class='ai-generated'>AI-generated description</p>
<p>{content}</p>
{relevancy_score}
</div>
<div class="card-footer">
<span>{name}</span>
<a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">π</span>
</a>
</div>
</div>
"""
return card
def make_html_papers(df,i):
title = df['title'][i]
content = df['abstract'][i]
url = df['doi'][i]
publication_date = df['publication_year'][i]
subtitle = df['subtitle'][i]
card = f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i+1} - {title}</h2>
<p>{content}</p>
</div>
<div class="card-footer">
<span>{subtitle}</span>
<a href="{url}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open paper">π</span>
</a>
</div>
</div>
"""
return card
def make_html_figure_sources(source,i,img_str):
meta = source.metadata
content = source.page_content.strip()
score = meta['reranking_score']
if score > 0.8:
color = "score-green"
elif score > 0.5:
color = "score-orange"
else:
color = "score-red"
toc_levels = []
if len(toc_levels) > 0:
name = f"<b>{toc_levels}</b><br/>{meta['name']}"
else:
name = meta['name']
relevancy_score = f"<p class=relevancy-score>Relevancy score: <span class='{color}'>{score:.1%}</span></p>"
if meta["figure_code"] != "N/A":
title = f"{meta['figure_code']} - {meta['short_name']}"
else:
title = f"{meta['short_name']}"
card = f"""
<div class="card card-image">
<div class="card-content">
<h2>Image {i} - {title} - Page {int(meta['page_number'])}</h2>
<img src="data:image/png;base64, { img_str }" alt="Alt text" />
<p class='ai-generated'>AI-generated description</p>
<p>{content}</p>
{relevancy_score}
</div>
<div class="card-footer">
<span>{name}</span>
<a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">π</span>
</a>
</div>
</div>
"""
return card
def make_toolbox(tool_name,description = "",checked = False,elem_id = "toggle"):
if checked:
span = "<span class='checkmark'>✓</span>"
else:
span = "<span class='loader'></span>"
# toolbox = f"""
# <div class="dropdown">
# <label for="{elem_id}" class="dropdown-toggle">
# {span}
# {tool_name}
# <span class="caret"></span>
# </label>
# <input type="checkbox" id="{elem_id}" hidden/>
# <div class="dropdown-content">
# <p>{description}</p>
# </div>
# </div>
# """
toolbox = f"""
<div class="dropdown">
<label for="{elem_id}" class="dropdown-toggle">
{span}
{tool_name}
</label>
</div>
"""
return toolbox
|