File size: 19,351 Bytes
eead5d8
 
 
48e003d
caf1faa
 
48e003d
caf1faa
eead5d8
a5686cb
ff42e3f
f0fc5f8
71ab0a8
5f9881c
f842a0e
 
4b4bf28
48e003d
 
d26538b
887905a
4b4bf28
 
 
f0fc5f8
f842a0e
f0fc5f8
6d2199d
f0fc5f8
91c4196
5f9881c
f0fc5f8
5f9881c
 
48e003d
 
5f9881c
48e003d
5f9881c
 
 
caf1faa
48e003d
 
 
 
f0fc5f8
 
ff42e3f
 
 
6d2199d
ff42e3f
 
f0fc5f8
abfa81d
 
 
ff42e3f
46e3999
 
6d2199d
 
f0fc5f8
7498c33
 
 
 
 
99e2b1f
6d2199d
 
 
91c4196
6d2199d
 
 
 
91c4196
6d2199d
d4c1a74
6d2199d
 
91c4196
6d2199d
a4595fc
ff42e3f
c974ee5
f0fc5f8
 
aa37f44
9d06027
48e003d
f0fc5f8
 
 
d4c1a74
 
5f9881c
 
c974ee5
48e003d
 
887905a
5f9881c
 
 
 
 
 
 
 
91f77da
3d561c7
 
 
91f77da
48e003d
 
5f9881c
48e003d
 
 
 
 
 
 
3d561c7
48e003d
d4c1a74
5f9881c
 
caf1faa
5f9881c
48e003d
3d561c7
48e003d
 
 
 
 
 
 
 
24f8d00
48e003d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf1faa
48e003d
 
24f8d00
48e003d
435c75a
24f8d00
 
 
 
 
 
 
63d1de4
24f8d00
 
 
 
 
4b4bf28
24f8d00
 
 
 
 
 
 
435c75a
24f8d00
4b4bf28
 
 
 
 
7fa8087
4b4bf28
 
 
 
 
 
 
 
 
 
 
 
 
 
a207af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46e3999
a5686cb
91c4196
 
 
6d2199d
91c4196
6d2199d
91c4196
 
 
 
12574b1
dc1d7e6
 
fdf1622
 
91c4196
6d2199d
91c4196
6d2199d
91c4196
 
caf1faa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0fc5f8
 
 
ff42e3f
 
787d3cb
c974ee5
787d3cb
38ed905
787d3cb
 
 
f0fc5f8
38ed905
787d3cb
 
5f9881c
787d3cb
f0fc5f8
 
c974ee5
 
 
 
 
 
 
3c9e1e2
48e003d
f0fc5f8
5f9881c
f0fc5f8
fa9f031
f0fc5f8
5f9881c
48e003d
 
 
 
 
 
38ed905
48e003d
a3bf481
c974ee5
3d561c7
 
 
a3bf481
887905a
48e003d
fa9f031
 
 
3c9e1e2
 
5f9881c
3c9e1e2
5f9881c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8edfef8
5f9881c
 
 
 
 
3c9e1e2
5f9881c
caf1faa
3c9e1e2
 
 
887905a
5f9881c
3c9e1e2
 
 
 
 
887905a
5f9881c
3c9e1e2
 
 
 
5f9881c
 
 
 
 
 
 
 
3c9e1e2
 
 
 
 
 
 
 
 
 
f0fc5f8
 
 
 
 
 
 
4b4bf28
 
 
48e003d
caf1faa
48e003d
 
 
 
 
 
caf1faa
48e003d
caf1faa
48e003d
 
caf1faa
48e003d
 
caf1faa
48e003d
 
caf1faa
 
 
887905a
f0fc5f8
 
887905a
4b4bf28
 
 
48e003d
 
 
4b4bf28
 
 
 
 
 
 
48e003d
4b4bf28
 
 
 
 
48e003d
4b4bf28
 
 
 
 
 
 
 
 
 
 
 
 
 
887905a
b6bb4d7
d730458
e77b244
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from climateqa.engine.embeddings import get_embeddings_function
embeddings_function = get_embeddings_function()

from climateqa.knowledge.openalex import OpenAlex
from sentence_transformers import CrossEncoder

# reranker = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
oa = OpenAlex()

import gradio as gr
import pandas as pd
import numpy as np
import os
import time
import re
import json

from gradio import ChatMessage

# from gradio_modal import Modal

from io import BytesIO
import base64

from datetime import datetime
from azure.storage.fileshare import ShareServiceClient

from utils import create_user_id



# ClimateQ&A imports
from climateqa.engine.llm import get_llm
from climateqa.engine.vectorstore import get_pinecone_vectorstore
from climateqa.knowledge.retriever import ClimateQARetriever
from climateqa.engine.reranker import get_reranker
from climateqa.engine.embeddings import get_embeddings_function
from climateqa.engine.chains.prompts import audience_prompts
from climateqa.sample_questions import QUESTIONS
from climateqa.constants import POSSIBLE_REPORTS
from climateqa.utils import get_image_from_azure_blob_storage
from climateqa.engine.keywords import make_keywords_chain
# from climateqa.engine.chains.answer_rag import make_rag_papers_chain
from climateqa.engine.graph import make_graph_agent,display_graph

from front.utils import make_html_source,parse_output_llm_with_sources,serialize_docs,make_toolbox

# Load environment variables in local mode
try:
    from dotenv import load_dotenv
    load_dotenv()
except Exception as e:
    pass

# Set up Gradio Theme
theme = gr.themes.Base(
    primary_hue="blue",
    secondary_hue="red",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)



init_prompt = ""

system_template = {
    "role": "system",
    "content": init_prompt,
}

account_key = os.environ["BLOB_ACCOUNT_KEY"]
if len(account_key) == 86:
    account_key += "=="

credential = {
    "account_key": account_key,
    "account_name": os.environ["BLOB_ACCOUNT_NAME"],
}

account_url = os.environ["BLOB_ACCOUNT_URL"]
file_share_name = "climateqa"
service = ShareServiceClient(account_url=account_url, credential=credential)
share_client = service.get_share_client(file_share_name)

user_id = create_user_id()



# Create vectorstore and retriever
vectorstore = get_pinecone_vectorstore(embeddings_function)
llm = get_llm(provider="openai",max_tokens = 1024,temperature = 0.0)
reranker = get_reranker("nano")
agent = make_graph_agent(llm,vectorstore,reranker)




async def chat(query,history,audience,sources,reports):
    """taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
    (messages in gradio format, messages in langchain format, source documents)"""

    date_now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f">> NEW QUESTION ({date_now}) : {query}")

    if audience == "Children":
        audience_prompt = audience_prompts["children"]
    elif audience == "General public":
        audience_prompt = audience_prompts["general"]
    elif audience == "Experts":
        audience_prompt = audience_prompts["experts"]
    else:
        audience_prompt = audience_prompts["experts"]

    # Prepare default values
    if len(sources) == 0:
        sources = ["IPCC"]

    # if len(reports) == 0: # TODO 
    reports = []
    
    inputs = {"user_input": query,"audience": audience_prompt,"sources":sources}
    result = agent.astream_events(inputs,version = "v1") 
    
    # path_reformulation = "/logs/reformulation/final_output"
    # path_keywords = "/logs/keywords/final_output"
    # path_retriever = "/logs/find_documents/final_output"
    # path_answer = "/logs/answer/streamed_output_str/-"

    docs = []
    docs_html = ""
    output_query = ""
    output_language = ""
    output_keywords = ""
    gallery = []
    start_streaming = False

    steps_display = {
        "categorize_intent":("πŸ”„οΈ Analyzing user message",True),
        "transform_query":("πŸ”„οΈ Thinking step by step to answer the question",True),
        "retrieve_documents":("πŸ”„οΈ Searching in the knowledge base",False),
    }
    
    used_documents = []
    answer_message_content = ""
    try:
        async for event in result:
            if "langgraph_node" in event["metadata"]:
                node = event["metadata"]["langgraph_node"]

                if event["event"] == "on_chain_end" and event["name"] == "retrieve_documents" :# when documents are retrieved
                    try:
                        docs = event["data"]["output"]["documents"]
                        docs_html = []
                        for i, d in enumerate(docs, 1):
                            docs_html.append(make_html_source(d, i))
                        
                        used_documents = used_documents + [d.metadata["name"] for d in docs]
                        history[-1].content = "Adding sources :\n\n - " + "\n - ".join(np.unique(used_documents))
                            
                        docs_html = "".join(docs_html)
                        
                    except Exception as e:
                        print(f"Error getting documents: {e}")
                        print(event)
 
                elif event["name"] in steps_display.keys() and event["event"] == "on_chain_start": #display steps
                    event_description,display_output = steps_display[node]
                    if not hasattr(history[-1], 'metadata') or history[-1].metadata["title"] != event_description: # if a new step begins
                        history.append(ChatMessage(role="assistant", content = "", metadata={'title' :event_description}))
 
                elif event["name"] != "transform_query" and event["event"] == "on_chat_model_stream" and node in ["answer_rag", "answer_search"]:# if streaming answer
                    if start_streaming == False:
                        start_streaming = True
                        history.append(ChatMessage(role="assistant", content = ""))
                    answer_message_content +=  event["data"]["chunk"].content
                    answer_message_content = parse_output_llm_with_sources(answer_message_content)
                    history[-1] = ChatMessage(role="assistant", content = answer_message_content)
                    # history.append(ChatMessage(role="assistant", content = new_message_content))

                if event["name"] == "transform_query" and event["event"] =="on_chain_end":
                    if hasattr(history[-1],"content"):
                        history[-1].content += "Decompose question into sub-questions: \n\n - " + "\n - ".join([q["question"] for q in event["data"]["output"]["remaining_questions"]])
                        
                if event["name"] == "categorize_intent" and event["event"] == "on_chain_start":
                    print("X")
            
            yield history,docs_html,output_query,output_language,gallery #,output_query,output_keywords
 
    except Exception as e:
        print(event, "has failed")
        raise gr.Error(f"{e}")


    try:
        # Log answer on Azure Blob Storage
        if os.getenv("GRADIO_ENV") != "local":
            timestamp = str(datetime.now().timestamp())
            file = timestamp + ".json"
            prompt = history[1]["content"]
            logs = {
                "user_id": str(user_id),
                "prompt": prompt,
                "query": prompt,
                "question":output_query,
                "sources":sources,
                "docs":serialize_docs(docs),
                "answer": history[-1][1],
                "time": timestamp,
            }
            log_on_azure(file, logs, share_client)
    except Exception as e:
        print(f"Error logging on Azure Blob Storage: {e}")
        raise gr.Error(f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)")

    image_dict = {}
    for i,doc in enumerate(docs):
        
        if doc.metadata["chunk_type"] == "image":
            try:
                key = f"Image {i+1}"
                image_path = doc.metadata["image_path"].split("documents/")[1]
                img = get_image_from_azure_blob_storage(image_path)

                # Convert the image to a byte buffer
                buffered = BytesIO()
                img.save(buffered, format="PNG")
                img_str = base64.b64encode(buffered.getvalue()).decode()

                # Embedding the base64 string in Markdown
                markdown_image = f"![Alt text](data:image/png;base64,{img_str})"
                image_dict[key] = {"img":img,"md":markdown_image,"caption":doc.page_content,"key":key,"figure_code":doc.metadata["figure_code"]}
            except Exception as e:
                print(f"Skipped adding image {i} because of {e}")

    ## temp removing
    # if len(image_dict) > 0:

    #     gallery = [x["img"] for x in list(image_dict.values())]
    #     img = list(image_dict.values())[0]
    #     img_md = img["md"]
    #     img_caption = img["caption"]
    #     img_code = img["figure_code"]
    #     if img_code != "N/A":
    #         img_name = f"{img['key']} - {img['figure_code']}"
    #     else:
    #         img_name = f"{img['key']}"

    #     answer_yet = history[-1][1] + f"\n\n{img_md}\n<p class='chatbot-caption'><b>{img_name}</b> - {img_caption}</p>"
    #     history[-1] = (history[-1][0],answer_yet)
    #     history = [tuple(x) for x in history]

    # yield history,docs_html,output_query,output_language,gallery#,output_query,output_keywords


def save_feedback(feed: str, user_id):
    if len(feed) > 1:
        timestamp = str(datetime.now().timestamp())
        file = user_id + timestamp + ".json"
        logs = {
            "user_id": user_id,
            "feedback": feed,
            "time": timestamp,
        }
        log_on_azure(file, logs, share_client)
        return "Feedback submitted, thank you!"




def log_on_azure(file, logs, share_client):
    logs = json.dumps(logs)
    file_client = share_client.get_file_client(file)
    file_client.upload_file(logs)


def generate_keywords(query):
    chain = make_keywords_chain(llm)
    keywords = chain.invoke(query)
    keywords = " AND ".join(keywords["keywords"])
    return keywords



papers_cols_widths = {
    "doc":50,
    "id":100,
    "title":300,
    "doi":100,
    "publication_year":100,
    "abstract":500,
    "rerank_score":100,
    "is_oa":50,
}

papers_cols = list(papers_cols_widths.keys())
papers_cols_widths = list(papers_cols_widths.values())


# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------


init_prompt = """
Hello, I am ClimateQ&A, a conversational assistant designed to help you understand climate change and biodiversity loss. I will answer your questions by **sifting through the IPCC and IPBES scientific reports**.

❓ How to use
- **Language**: You can ask me your questions in any language. 
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in the IPCC or IPBES reports, or both.

⚠️ Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*

What do you want to learn ?
"""


def vote(data: gr.LikeData):
    if data.liked:
        print(data.value)
    else:
        print(data)



with gr.Blocks(title="Climate Q&A", css_paths=os.getcwd()+ "/style.css", theme=theme,elem_id = "main-component") as demo:

    with gr.Tab("ClimateQ&A"):

        with gr.Row(elem_id="chatbot-row"):
            with gr.Column(scale=2):
                chatbot = gr.Chatbot(
                    value = [ChatMessage(role="assistant", content=init_prompt)],
                    type = "messages",
                    show_copy_button=True,
                    show_label = False,
                    elem_id="chatbot",
                    layout = "panel",
                    avatar_images = (None,"https://i.ibb.co/YNyd5W2/logo4.png"),
                )
                
                # bot.like(vote,None,None)



                with gr.Row(elem_id = "input-message"):
                    textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox")
                 

            with gr.Column(scale=1, variant="panel",elem_id = "right-panel"):


                with gr.Tabs() as tabs:
                    with gr.TabItem("Examples",elem_id = "tab-examples",id = 0):
                                        
                        examples_hidden = gr.Textbox(visible = False)
                        first_key = list(QUESTIONS.keys())[0]
                        dropdown_samples = gr.Dropdown(QUESTIONS.keys(),value = first_key,interactive = True,show_label = True,label = "Select a category of sample questions",elem_id = "dropdown-samples")

                        samples = []
                        for i,key in enumerate(QUESTIONS.keys()):

                            examples_visible = True if i == 0 else False

                            with gr.Row(visible = examples_visible) as group_examples:

                                examples_questions = gr.Examples(
                                    QUESTIONS[key],
                                    [examples_hidden],
                                    examples_per_page=8,
                                    run_on_click=False,
                                    elem_id=f"examples{i}",
                                    api_name=f"examples{i}",
                                    # label = "Click on the example question or enter your own",
                                    # cache_examples=True,
                                )
                            
                            samples.append(group_examples)


                    with gr.Tab("Sources",elem_id = "tab-citations",id = 1):
                        sources_textbox = gr.HTML(show_label=False, elem_id="sources-textbox")
                        docs_textbox = gr.State("")

                    # with Modal(visible = False) as config_modal:
                    with gr.Tab("Configuration",elem_id = "tab-config",id = 2):

                        gr.Markdown("Reminder: You can talk in any language, ClimateQ&A is multi-lingual!")


                        dropdown_sources = gr.CheckboxGroup(
                            ["IPCC", "IPBES","IPOS"],
                            label="Select source",
                            value=["IPCC"],
                            interactive=True,
                        )

                        dropdown_reports = gr.Dropdown(
                            POSSIBLE_REPORTS,
                            label="Or select specific reports",
                            multiselect=True,
                            value=None,
                            interactive=True,
                        )

                        dropdown_audience = gr.Dropdown(
                            ["Children","General public","Experts"],
                            label="Select audience",
                            value="Experts",
                            interactive=True,
                        )

                        output_query = gr.Textbox(label="Query used for retrieval",show_label = True,elem_id = "reformulated-query",lines = 2,interactive = False)
                        output_language = gr.Textbox(label="Language",show_label = True,elem_id = "language",lines = 1,interactive = False)



#---------------------------------------------------------------------------------------
# OTHER TABS
#---------------------------------------------------------------------------------------


    with gr.Tab("Figures",elem_id = "tab-images",elem_classes = "max-height other-tabs"):
        gallery_component = gr.Gallery()

    # with gr.Tab("Papers (beta)",elem_id = "tab-papers",elem_classes = "max-height other-tabs"):

    #     with gr.Row():
    #         with gr.Column(scale=1):
    #             query_papers = gr.Textbox(placeholder="Question",show_label=False,lines = 1,interactive = True,elem_id="query-papers")
    #             keywords_papers = gr.Textbox(placeholder="Keywords",show_label=False,lines = 1,interactive = True,elem_id="keywords-papers")
    #             after = gr.Slider(minimum=1950,maximum=2023,step=1,value=1960,label="Publication date",show_label=True,interactive=True,elem_id="date-papers")
    #             search_papers = gr.Button("Search",elem_id="search-papers",interactive=True)

    #         with gr.Column(scale=7):

    #             with gr.Tab("Summary",elem_id="papers-summary-tab"):
    #                 papers_summary = gr.Markdown(visible=True,elem_id="papers-summary")

    #             with gr.Tab("Relevant papers",elem_id="papers-results-tab"):
    #                 papers_dataframe = gr.Dataframe(visible=True,elem_id="papers-table",headers = papers_cols)

    #             with gr.Tab("Citations network",elem_id="papers-network-tab"):
    #                 citations_network = gr.HTML(visible=True,elem_id="papers-citations-network")


            
    with gr.Tab("About",elem_classes = "max-height other-tabs"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("See more info at [https://climateqa.com](https://climateqa.com/docs/intro/)")


    def start_chat(query,history):
        # history = history + [(query,None)]
        # history = [tuple(x) for x in history]
        history = history + [ChatMessage(role="user", content=query)]
        return (gr.update(interactive = False),gr.update(selected=1),history)
    
    def finish_chat():
        return (gr.update(interactive = True,value = ""))

    (textbox
        .submit(start_chat, [textbox,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_textbox")
        .then(chat, [textbox,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language,gallery_component],concurrency_limit = 8,api_name = "chat_textbox")
        .then(finish_chat, None, [textbox],api_name = "finish_chat_textbox")
    )

    (examples_hidden
        .change(start_chat, [examples_hidden,chatbot], [textbox,tabs,chatbot],queue = False,api_name = "start_chat_examples")
        .then(chat, [examples_hidden,chatbot,dropdown_audience, dropdown_sources,dropdown_reports], [chatbot,sources_textbox,output_query,output_language,gallery_component],concurrency_limit = 8,api_name = "chat_examples")
        .then(finish_chat, None, [textbox],api_name = "finish_chat_examples")
    )


    def change_sample_questions(key):
        index = list(QUESTIONS.keys()).index(key)
        visible_bools = [False] * len(samples)
        visible_bools[index] = True
        return [gr.update(visible=visible_bools[i]) for i in range(len(samples))]



    dropdown_samples.change(change_sample_questions,dropdown_samples,samples)


    demo.queue()

demo.launch(ssr_mode=False)