File size: 7,423 Bytes
5c718d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from utils import *
from modules import *
from data import *
from torch.utils.data import DataLoader
import torch.nn.functional as F
from datetime import datetime
import hydra
from omegaconf import DictConfig, OmegaConf
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities.seed import seed_everything
import torch.multiprocessing
import seaborn as sns
from pytorch_lightning.callbacks import ModelCheckpoint
import sys
import pdb
import matplotlib as mpl
from skimage import measure
from scipy.stats import mode as statsmode
from collections import OrderedDict
import unet
import pdb

torch.multiprocessing.set_sharing_strategy("file_system")
colors = ("red", "palegreen", "green", "steelblue", "blue", "yellow", "lightgrey")
class_names = (
    "Buildings",
    "Cultivation",
    "Natural green",
    "Wetland",
    "Water",
    "Infrastructure",
    "Background",
)
bounds = list(np.arange(len(class_names) + 1) + 1)
cmap = mpl.colors.ListedColormap(colors)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)


def retouch_label(pred_label, true_label):
    retouched_label = pred_label + 0
    blobs = measure.label(retouched_label)
    for idx in np.unique(blobs):
        #  most frequent label class in this blob
        retouched_label[blobs == idx] = statsmode(true_label[blobs == idx])[0][0]
    return retouched_label


def get_class_labels(dataset_name):
    if dataset_name.startswith("cityscapes"):
        return [
            "road",
            "sidewalk",
            "parking",
            "rail track",
            "building",
            "wall",
            "fence",
            "guard rail",
            "bridge",
            "tunnel",
            "pole",
            "polegroup",
            "traffic light",
            "traffic sign",
            "vegetation",
            "terrain",
            "sky",
            "person",
            "rider",
            "car",
            "truck",
            "bus",
            "caravan",
            "trailer",
            "train",
            "motorcycle",
            "bicycle",
        ]
    elif dataset_name == "cocostuff27":
        return [
            "electronic",
            "appliance",
            "food",
            "furniture",
            "indoor",
            "kitchen",
            "accessory",
            "animal",
            "outdoor",
            "person",
            "sports",
            "vehicle",
            "ceiling",
            "floor",
            "food",
            "furniture",
            "rawmaterial",
            "textile",
            "wall",
            "window",
            "building",
            "ground",
            "plant",
            "sky",
            "solid",
            "structural",
            "water",
        ]
    elif dataset_name == "voc":
        return [
            "background",
            "aeroplane",
            "bicycle",
            "bird",
            "boat",
            "bottle",
            "bus",
            "car",
            "cat",
            "chair",
            "cow",
            "diningtable",
            "dog",
            "horse",
            "motorbike",
            "person",
            "pottedplant",
            "sheep",
            "sofa",
            "train",
            "tvmonitor",
        ]
    elif dataset_name == "potsdam":
        return ["roads and cars", "buildings and clutter", "trees and vegetation"]
    else:
        raise ValueError("Unknown Dataset {}".format(dataset_name))


@hydra.main(config_path="configs", config_name="train_config.yml")
def my_app(cfg: DictConfig) -> None:
    OmegaConf.set_struct(cfg, False)
    print(OmegaConf.to_yaml(cfg))
    pytorch_data_dir = cfg.pytorch_data_dir
    data_dir = join(cfg.output_root, "data")
    log_dir = join(cfg.output_root, "logs")
    checkpoint_dir = join(cfg.output_root, "checkpoints")

    prefix = "{}/{}_{}".format(cfg.log_dir, cfg.dataset_name, cfg.experiment_name)
    name = "{}_date_{}".format(prefix, datetime.now().strftime("%b%d_%H-%M-%S"))
    cfg.full_name = prefix

    os.makedirs(data_dir, exist_ok=True)
    os.makedirs(log_dir, exist_ok=True)
    os.makedirs(checkpoint_dir, exist_ok=True)

    seed_everything(seed=0)

    print(data_dir)
    print(cfg.output_root)

    geometric_transforms = T.Compose(
        [T.RandomHorizontalFlip(), T.RandomResizedCrop(size=cfg.res, scale=(0.8, 1.0))]
    )
    photometric_transforms = T.Compose(
        [
            T.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.1),
            T.RandomGrayscale(0.2),
            T.RandomApply([T.GaussianBlur((5, 5))]),
        ]
    )

    sys.stdout.flush()

    train_dataset = ContrastiveSegDataset(
        pytorch_data_dir=pytorch_data_dir,
        dataset_name=cfg.dataset_name,
        crop_type=cfg.crop_type,
        image_set="train",
        transform=get_transform(cfg.res, False, cfg.loader_crop_type),
        target_transform=get_transform(cfg.res, True, cfg.loader_crop_type),
        cfg=cfg,
        aug_geometric_transform=geometric_transforms,
        aug_photometric_transform=photometric_transforms,
        num_neighbors=cfg.num_neighbors,
        mask=True,
        pos_images=True,
        pos_labels=True,
    )

    if cfg.dataset_name == "voc":
        val_loader_crop = None
    else:
        val_loader_crop = "center"

    val_dataset = ContrastiveSegDataset(
        pytorch_data_dir=pytorch_data_dir,
        dataset_name=cfg.dataset_name,
        crop_type=None,
        image_set="val",
        transform=get_transform(320, False, val_loader_crop),
        target_transform=get_transform(320, True, val_loader_crop),
        mask=True,
        cfg=cfg,
    )

    # val_dataset = MaterializedDataset(val_dataset)
    train_loader = DataLoader(
        train_dataset,
        cfg.batch_size,
        shuffle=True,
        num_workers=cfg.num_workers,
        pin_memory=True,
    )

    if cfg.submitting_to_aml:
        val_batch_size = 16
    else:
        val_batch_size = cfg.batch_size

    val_loader = DataLoader(
        val_dataset,
        val_batch_size,
        shuffle=False,
        num_workers=cfg.num_workers,
        pin_memory=True,
    )

    model = LitUnsupervisedSegmenter(train_dataset.n_classes, cfg)

    tb_logger = TensorBoardLogger(join(log_dir, name), default_hp_metric=False)

    if cfg.submitting_to_aml:
        gpu_args = dict(gpus=1, val_check_interval=250)

        if gpu_args["val_check_interval"] > len(train_loader):
            gpu_args.pop("val_check_interval")

    else:
        gpu_args = dict(gpus=-1, accelerator="ddp", val_check_interval=cfg.val_freq)
        # gpu_args = dict(gpus=1, accelerator='ddp', val_check_interval=cfg.val_freq)

        if gpu_args["val_check_interval"] > len(train_loader) // 4:
            gpu_args.pop("val_check_interval")

    trainer = Trainer(
        log_every_n_steps=cfg.scalar_log_freq,
        logger=tb_logger,
        max_steps=cfg.max_steps,
        callbacks=[
            ModelCheckpoint(
                dirpath=join(checkpoint_dir, name),
                every_n_train_steps=400,
                save_top_k=2,
                monitor="test/cluster/mIoU",
                mode="max",
            )
        ],
        **gpu_args
    )
    trainer.fit(model, train_loader, val_loader)


if __name__ == "__main__":
    prep_args()
    my_app()