File size: 1,916 Bytes
424188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import math


def positional_encoding_2d(d_model, height, width):
    """
    :param d_model: dimension of the model
    :param height: height of the positions
    :param width: width of the positions
    :return: d_model*height*width position matrix
    """
    if d_model % 4 != 0:
        raise ValueError("Cannot use sin/cos positional encoding with "
                         "odd dimension (got dim={:d})".format(d_model))
    pe = torch.zeros(d_model, height, width)
    # Each dimension use half of d_model
    d_model = int(d_model / 2)
    div_term = torch.exp(torch.arange(0., d_model, 2) *
                         -(math.log(10000.0) / d_model))
    pos_w = torch.arange(0., width).unsqueeze(1)
    pos_h = torch.arange(0., height).unsqueeze(1)
    pe[0:d_model:2, :, :] = torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
    pe[1:d_model:2, :, :] = torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
    pe[d_model::2, :, :] = torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
    pe[d_model + 1::2, :, :] = torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)

    return pe


def positional_encoding_1d(d_model, length):
    """
    :param d_model: dimension of the model
    :param length: length of positions
    :return: length*d_model position matrix
    """
    if d_model % 2 != 0:
        raise ValueError("Cannot use sin/cos positional encoding with "
                         "odd dim (got dim={:d})".format(d_model))
    pe = torch.zeros(length, d_model)
    position = torch.arange(0, length).unsqueeze(1)
    div_term = torch.exp((torch.arange(0, d_model, 2, dtype=torch.float) *
                          -(math.log(10000.0) / d_model)))
    pe[:, 0::2] = torch.sin(position.float() * div_term)
    pe[:, 1::2] = torch.cos(position.float() * div_term)

    return pe