|
import gradio as gr |
|
import librosa |
|
from asr import transcribe, ASR_EXAMPLES, ASR_LANGUAGES, ASR_NOTE |
|
from tts import synthesize, TTS_EXAMPLES, TTS_LANGUAGES |
|
from lid import identify, LID_EXAMPLES |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
|
|
mms_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Audio(), |
|
gr.Dropdown( |
|
[f"{k} ({v})" for k, v in ASR_LANGUAGES.items()], |
|
label="Language", |
|
value="eng English", |
|
), |
|
|
|
], |
|
outputs="text", |
|
examples=ASR_EXAMPLES, |
|
title="Speech-to-text", |
|
description=( |
|
"Transcribe audio from a microphone or input file in your desired language." |
|
), |
|
article=ASR_NOTE, |
|
allow_flagging="never", |
|
) |
|
|
|
mms_synthesize = gr.Interface( |
|
fn=synthesize, |
|
inputs=[ |
|
gr.Text(label="Input text"), |
|
gr.Dropdown( |
|
[f"{k} ({v})" for k, v in TTS_LANGUAGES.items()], |
|
label="Language", |
|
value="eng English", |
|
), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Speed"), |
|
], |
|
outputs=[ |
|
gr.Audio(label="Generated Audio", type="numpy"), |
|
gr.Text(label="Filtered text after removing OOVs"), |
|
], |
|
examples=TTS_EXAMPLES, |
|
title="Text-to-speech", |
|
description=("Generate audio in your desired language from input text."), |
|
allow_flagging="never", |
|
) |
|
|
|
mms_identify = gr.Interface( |
|
fn=identify, |
|
inputs=[ |
|
gr.Audio(), |
|
], |
|
outputs=gr.Label(num_top_classes=10), |
|
examples=LID_EXAMPLES, |
|
title="Language Identification", |
|
description=("Identity the language of input audio."), |
|
allow_flagging="never", |
|
) |
|
|
|
tabbed_interface = gr.TabbedInterface( |
|
[mms_transcribe, mms_synthesize, mms_identify], |
|
["Speech-to-text", "Text-to-speech", "Language Identification"], |
|
) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
"<p align='center' style='font-size: 20px;'>MMS: Scaling Speech Technology to 1000+ languages demo. See our <a href='https://ai.facebook.com/blog/multilingual-model-speech-recognition/'>blog post</a> and <a href='https://arxiv.org/abs/2305.13516'>paper</a>.</p>" |
|
) |
|
gr.HTML( |
|
"""<center>Click on the appropriate tab to explore Speech-to-text (ASR), Text-to-speech (TTS) and Language identification (LID) demos. </center>""" |
|
) |
|
gr.HTML( |
|
"""<center>You can also finetune MMS models on your data using the recipes provides here - <a href='https://huggingface.co/blog/mms_adapters'>ASR</a> <a href='https://github.com/ylacombe/finetune-hf-vits'>TTS</a> </center>""" |
|
) |
|
gr.HTML( |
|
"""<center><a href="https://huggingface.co/spaces/facebook/MMS?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"><img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for more control and no queue.</center>""" |
|
) |
|
|
|
tabbed_interface.render() |
|
gr.HTML( |
|
""" |
|
<div class="footer" style="text-align:center"> |
|
<p> |
|
Model by <a href="https://ai.facebook.com" style="text-decoration: underline;" target="_blank">Meta AI</a> - Gradio Demo by 🤗 Hugging Face |
|
</p> |
|
</div> |
|
""" |
|
) |
|
|
|
demo.queue(default_concurrency_limit=3) |
|
demo.launch() |