Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,208 +1,63 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
import joblib
|
|
|
|
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
-
import
|
7 |
-
import openai
|
8 |
from sklearn.preprocessing import LabelEncoder
|
9 |
-
import requests # Add this at the top with other imports
|
10 |
-
from io import BytesIO
|
11 |
-
import gdown
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
|
14 |
-
#
|
15 |
-
st.set_page_config(
|
16 |
-
page_title="The Guide",
|
17 |
-
page_icon="🚗",
|
18 |
-
layout="wide",
|
19 |
-
initial_sidebar_state="expanded"
|
20 |
-
)
|
21 |
|
22 |
-
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
}
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
color: black !important;
|
36 |
-
}
|
37 |
-
|
38 |
-
/* Dropdown and select elements */
|
39 |
-
select option,
|
40 |
-
.streamlit-selectbox option,
|
41 |
-
.stSelectbox > div[data-baseweb="select"] > div,
|
42 |
-
.stSelectbox > div > div > div {
|
43 |
-
color: black !important;
|
44 |
-
background-color: white !important;
|
45 |
-
}
|
46 |
-
|
47 |
-
/* Input fields */
|
48 |
-
input,
|
49 |
-
.stNumberInput > div > div > input {
|
50 |
-
color: black !important;
|
51 |
-
}
|
52 |
-
|
53 |
-
/* Text elements */
|
54 |
-
div.row-widget.stSelectbox > div,
|
55 |
-
div.row-widget.stSelectbox > div > div > div,
|
56 |
-
.streamlit-expanderContent,
|
57 |
-
.stMarkdown,
|
58 |
-
p, span, label {
|
59 |
-
color: black !important;
|
60 |
-
}
|
61 |
-
|
62 |
-
/* Keep button text white */
|
63 |
-
.stButton > button {
|
64 |
-
color: white !important;
|
65 |
-
background-color: #FF4B4B;
|
66 |
-
}
|
67 |
-
|
68 |
-
/* Specific styling for select boxes */
|
69 |
-
div[data-baseweb="select"] {
|
70 |
-
color: black !important;
|
71 |
-
background-color: white !important;
|
72 |
-
}
|
73 |
-
|
74 |
-
div[data-baseweb="select"] * {
|
75 |
-
color: black !important;
|
76 |
-
}
|
77 |
-
|
78 |
-
/* Style for the selected option */
|
79 |
-
div[data-baseweb="select"] > div:first-child {
|
80 |
-
color: black !important;
|
81 |
-
background-color: white !important;
|
82 |
-
}
|
83 |
-
|
84 |
-
/* Dropdown menu items */
|
85 |
-
[role="listbox"] {
|
86 |
-
background-color: white !important;
|
87 |
-
}
|
88 |
-
|
89 |
-
[role="listbox"] [role="option"] {
|
90 |
-
color: black !important;
|
91 |
-
}
|
92 |
-
|
93 |
-
/* Number input specific styling */
|
94 |
-
input[type="number"] {
|
95 |
-
color: black !important;
|
96 |
-
background-color: white !important;
|
97 |
-
}
|
98 |
-
|
99 |
-
.stNumberInput div[data-baseweb="input"] {
|
100 |
-
background-color: white !important;
|
101 |
-
}
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
""", unsafe_allow_html=True)
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
'bentley': (200000, 500000),
|
116 |
-
'lamborghini': (250000, 550000),
|
117 |
-
'ferrari': (250000, 600000),
|
118 |
-
'mclaren': (200000, 500000),
|
119 |
-
'aston-martin': (150000, 400000),
|
120 |
-
'maserati': (100000, 300000)
|
121 |
-
},
|
122 |
-
'premium_brands': {
|
123 |
-
'porsche': (60000, 150000),
|
124 |
-
'bmw': (40000, 90000),
|
125 |
-
'mercedes-benz': (45000, 95000),
|
126 |
-
'audi': (35000, 85000),
|
127 |
-
'lexus': (40000, 80000),
|
128 |
-
'jaguar': (45000, 90000),
|
129 |
-
'land-rover': (40000, 90000),
|
130 |
-
'volvo': (35000, 75000),
|
131 |
-
'infiniti': (35000, 70000),
|
132 |
-
'cadillac': (40000, 85000),
|
133 |
-
'tesla': (40000, 100000)
|
134 |
-
},
|
135 |
-
'mid_tier_brands': {
|
136 |
-
'acura': (30000, 50000),
|
137 |
-
'lincoln': (35000, 65000),
|
138 |
-
'buick': (25000, 45000),
|
139 |
-
'chrysler': (25000, 45000),
|
140 |
-
'alfa-romeo': (35000, 60000),
|
141 |
-
'genesis': (35000, 60000)
|
142 |
-
},
|
143 |
-
'standard_brands': {
|
144 |
-
'toyota': (20000, 35000),
|
145 |
-
'honda': (20000, 35000),
|
146 |
-
'volkswagen': (20000, 35000),
|
147 |
-
'mazda': (20000, 32000),
|
148 |
-
'subaru': (22000, 35000),
|
149 |
-
'hyundai': (18000, 32000),
|
150 |
-
'kia': (17000, 30000),
|
151 |
-
'ford': (20000, 40000),
|
152 |
-
'chevrolet': (20000, 38000),
|
153 |
-
'gmc': (25000, 45000),
|
154 |
-
'jeep': (25000, 45000),
|
155 |
-
'dodge': (22000, 40000),
|
156 |
-
'ram': (25000, 45000),
|
157 |
-
'nissan': (18000, 32000)
|
158 |
-
},
|
159 |
-
'economy_brands': {
|
160 |
-
'mitsubishi': (15000, 25000),
|
161 |
-
'suzuki': (12000, 22000),
|
162 |
-
'fiat': (15000, 25000),
|
163 |
-
'mini': (20000, 35000),
|
164 |
-
'smart': (15000, 25000)
|
165 |
-
},
|
166 |
-
'discontinued_brands': {
|
167 |
-
'pontiac': (5000, 15000),
|
168 |
-
'saturn': (4000, 12000),
|
169 |
-
'mercury': (4000, 12000),
|
170 |
-
'oldsmobile': (3000, 10000),
|
171 |
-
'plymouth': (3000, 10000),
|
172 |
-
'saab': (5000, 15000)
|
173 |
-
}
|
174 |
-
}
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
# Ensure column names match the model's expectations
|
185 |
-
original_data.columns = original_data.columns.str.strip().str.capitalize()
|
186 |
-
return original_data
|
187 |
-
except Exception as e:
|
188 |
-
st.error(f"Error loading dataset: {str(e)}")
|
189 |
-
raise e
|
190 |
|
191 |
-
@st.cache_resource
|
192 |
def load_model_and_encodings():
|
193 |
try:
|
194 |
-
# Show loading message
|
195 |
with st.spinner('Loading model...'):
|
196 |
model_content = hf_hub_download(repo_id="EdBoy2202/car_prediction_model", filename="car_price_modelv3.pkl")
|
197 |
model = joblib.load(model_content)
|
|
|
|
|
198 |
|
199 |
-
# Load data for encodings
|
200 |
-
original_data = load_datasets()
|
201 |
-
|
202 |
-
# Create fresh encoders from data
|
203 |
label_encoders = {}
|
204 |
categorical_features = ['Make', 'model', 'condition', 'fuel', 'title_status',
|
205 |
-
|
206 |
|
207 |
for feature in categorical_features:
|
208 |
if feature in original_data.columns:
|
@@ -216,487 +71,94 @@ def load_model_and_encodings():
|
|
216 |
st.error(f"Error loading model: {str(e)}")
|
217 |
raise e
|
218 |
|
219 |
-
|
220 |
-
#
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
#
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
"
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
# Ensure all required features are present
|
294 |
-
for feature in model.feature_names_in_:
|
295 |
-
if feature not in input_df:
|
296 |
-
input_df[feature] = 0 # Default value for missing features
|
297 |
-
|
298 |
-
# Reorder columns
|
299 |
-
input_df = input_df[model.feature_names_in_]
|
300 |
-
|
301 |
-
return input_df
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
# --- Styling functions ---
|
306 |
-
st.markdown("""
|
307 |
-
<style>
|
308 |
-
/* Force black text globally */
|
309 |
-
.stApp, .stApp * {
|
310 |
-
color: black !important;
|
311 |
-
}
|
312 |
-
|
313 |
-
/* Specific overrides for different elements */
|
314 |
-
.main {
|
315 |
-
padding: 0rem 1rem;
|
316 |
-
}
|
317 |
-
|
318 |
-
.stButton>button {
|
319 |
-
width: 100%;
|
320 |
-
background-color: #FF4B4B;
|
321 |
-
color: white !important; /* Keep button text white */
|
322 |
-
border-radius: 5px;
|
323 |
-
padding: 0.5rem 1rem;
|
324 |
-
border: none;
|
325 |
-
}
|
326 |
-
|
327 |
-
.stButton>button:hover {
|
328 |
-
background-color: #FF6B6B;
|
329 |
-
}
|
330 |
-
|
331 |
-
.sidebar .sidebar-content {
|
332 |
-
background-color: #f5f5f5;
|
333 |
-
}
|
334 |
-
|
335 |
-
/* Input fields and selectboxes */
|
336 |
-
.stSelectbox select,
|
337 |
-
.stSelectbox option,
|
338 |
-
.stSelectbox div,
|
339 |
-
.stNumberInput input,
|
340 |
-
.stTextInput input {
|
341 |
-
color: black !important;
|
342 |
-
}
|
343 |
-
|
344 |
-
/* Headers */
|
345 |
-
h1, h2, h3, h4, h5, h6 {
|
346 |
-
color: black !important;
|
347 |
-
}
|
348 |
-
|
349 |
-
/* Labels and text */
|
350 |
-
label, .stText, p, span {
|
351 |
-
color: black !important;
|
352 |
-
}
|
353 |
-
|
354 |
-
/* Selectbox options */
|
355 |
-
option {
|
356 |
-
color: black !important;
|
357 |
-
background-color: white !important;
|
358 |
-
}
|
359 |
-
|
360 |
-
/* Override for any Streamlit specific classes */
|
361 |
-
.st-emotion-cache-16idsys p,
|
362 |
-
.st-emotion-cache-1wmy9hl p,
|
363 |
-
.st-emotion-cache-16idsys span,
|
364 |
-
.st-emotion-cache-1wmy9hl span {
|
365 |
-
color: black !important;
|
366 |
-
}
|
367 |
-
|
368 |
-
/* Force white text only for the prediction button */
|
369 |
-
.stButton>button[data-testid="stButton"] {
|
370 |
-
color: white !important;
|
371 |
-
}
|
372 |
-
</style>
|
373 |
-
""", unsafe_allow_html=True)
|
374 |
-
|
375 |
-
def style_metric_container(label, value):
|
376 |
-
st.markdown(f"""
|
377 |
-
<div style="
|
378 |
-
background-color: #f8f9fa;
|
379 |
-
padding: 1rem;
|
380 |
-
border-radius: 5px;
|
381 |
-
margin: 0.5rem 0;
|
382 |
-
border-left: 5px solid #FF4B4B;
|
383 |
-
">
|
384 |
-
<p style="color: #666; margin-bottom: 0.2rem; font-size: 0.9rem;">{label}</p>
|
385 |
-
<p style="color: #1E1E1E; font-size: 1.5rem; font-weight: 600; margin: 0;">{value}</p>
|
386 |
-
</div>
|
387 |
-
""", unsafe_allow_html=True)
|
388 |
-
|
389 |
-
# --- OpenAI GPT-3 Assistant ---
|
390 |
-
def generate_gpt_response(prompt, dataset):
|
391 |
-
"""
|
392 |
-
First look up the dataset for relevant information. If no matches are found,
|
393 |
-
generate a GPT response.
|
394 |
-
"""
|
395 |
-
# Extract make and model from the prompt (simplified NLP parsing)
|
396 |
-
prompt_lower = prompt.lower()
|
397 |
-
make = None
|
398 |
-
model = None
|
399 |
-
|
400 |
-
# Example: Parse make and model from user query
|
401 |
-
for word in prompt_lower.split():
|
402 |
-
if word in dataset['Make'].str.lower().unique():
|
403 |
-
make = word
|
404 |
-
elif word in dataset['Model'].str.lower().unique():
|
405 |
-
model = word
|
406 |
-
|
407 |
-
# If we find relevant data, use it to respond
|
408 |
-
if make:
|
409 |
-
dataset_response = search_dataset(dataset, make, model)
|
410 |
-
if dataset_response is not None:
|
411 |
-
st.write("### Dataset Match Found")
|
412 |
-
st.dataframe(dataset_response) # Show results to the user
|
413 |
-
return f"I found some information in our dataset about {make.title()} {model.title() if model else ''}. Please see the details above."
|
414 |
-
|
415 |
-
# Ensure the API key is set securely
|
416 |
-
# You can use Streamlit's secrets management or environment variables
|
417 |
-
openai.api_key = os.getenv("GPT_TOKEN")
|
418 |
-
|
419 |
-
# Define the system message and messages list
|
420 |
-
system_message = {
|
421 |
-
"role": "system",
|
422 |
-
"content": (
|
423 |
-
"You are a helpful car shopping assistant. "
|
424 |
-
"Provide car recommendations based on user queries. "
|
425 |
-
"Include car makes, models, years, and approximate prices. "
|
426 |
-
"Be friendly and informative."
|
427 |
-
)
|
428 |
-
}
|
429 |
-
|
430 |
-
messages = [system_message, {"role": "user", "content": prompt}]
|
431 |
-
|
432 |
-
# Call the OpenAI ChatCompletion API
|
433 |
-
response = openai.ChatCompletion.create(
|
434 |
-
model="gpt-3.5-turbo", # or "gpt-4" if you have access
|
435 |
-
messages=messages,
|
436 |
-
max_tokens=500,
|
437 |
-
n=1,
|
438 |
-
stop=None,
|
439 |
-
temperature=0.7,
|
440 |
-
)
|
441 |
-
|
442 |
-
# Extract the assistant's reply
|
443 |
-
assistant_reply = response['choices'][0]['message']['content'].strip()
|
444 |
-
|
445 |
-
return assistant_reply
|
446 |
-
|
447 |
-
def create_assistant_section(dataset):
|
448 |
-
st.markdown("""
|
449 |
-
<div style='background-color: #f8f9fa; padding: 1.5rem; border-radius: 10px; margin-bottom: 1rem;'>
|
450 |
-
<h2 style='color: #1E1E1E; margin-top: 0;'>🤖 Car Shopping Assistant</h2>
|
451 |
-
<p style='color: #666;'>Ask me anything about cars! For example: 'What's a good car under $30,000 with low mileage?'</p>
|
452 |
-
</div>
|
453 |
-
""", unsafe_allow_html=True)
|
454 |
-
|
455 |
-
if "assistant_responses" not in st.session_state:
|
456 |
-
st.session_state.assistant_responses = []
|
457 |
-
|
458 |
-
prompt = st.text_input("Ask about car recommendations...",
|
459 |
-
placeholder="Type your question here...")
|
460 |
-
|
461 |
-
if prompt:
|
462 |
-
try:
|
463 |
-
# Use OpenAI API to generate response
|
464 |
-
response = generate_gpt_response(prompt, dataset)
|
465 |
-
st.session_state.assistant_responses.append(response)
|
466 |
-
except Exception as e:
|
467 |
-
response = f"Sorry, I encountered an error: {str(e)}"
|
468 |
-
st.session_state.assistant_responses.append(response)
|
469 |
-
|
470 |
-
# Display the latest response
|
471 |
-
st.write(response)
|
472 |
-
|
473 |
-
# Optionally display previous responses
|
474 |
-
if len(st.session_state.assistant_responses) > 1:
|
475 |
-
st.markdown("### Previous Responses")
|
476 |
-
for prev_response in st.session_state.assistant_responses[:-1]:
|
477 |
-
st.markdown("---")
|
478 |
-
st.write(prev_response)
|
479 |
-
|
480 |
-
if st.button("Clear Chat"):
|
481 |
-
st.session_state.assistant_responses = []
|
482 |
-
st.experimental_rerun()
|
483 |
-
|
484 |
-
# --- Prediction Interface ---
|
485 |
-
def create_prediction_interface():
|
486 |
-
with st.sidebar:
|
487 |
-
st.markdown("""
|
488 |
-
<div style='background-color: #FF4B4B; padding: 1rem; border-radius: 5px; margin-bottom: 2rem;'>
|
489 |
-
<h2 style='color: white; margin: 0;'>Car Details</h2>
|
490 |
-
</div>
|
491 |
-
""", unsafe_allow_html=True)
|
492 |
-
|
493 |
-
# Year slider
|
494 |
-
year = st.slider("Year", min_value=1980, max_value=2024, value=2022)
|
495 |
-
|
496 |
-
# Make selection
|
497 |
-
make_options = sorted(original_data['Make'].dropna().unique()) # Correct casing for 'Make'
|
498 |
-
make = st.selectbox("Make", options=make_options)
|
499 |
-
|
500 |
-
# Filter models based on selected make
|
501 |
-
filtered_models = sorted(original_data[original_data['Make'] == make]['Model'].dropna().unique()) # Match 'Model' casing
|
502 |
-
model_name = st.selectbox("Model", options=filtered_models if len(filtered_models) > 0 else ["No models available"])
|
503 |
-
|
504 |
-
if model_name == "No models available":
|
505 |
-
st.warning("No models are available for the selected make.")
|
506 |
-
|
507 |
-
# Additional inputs
|
508 |
-
condition = st.selectbox("Condition", ['new', 'like new', 'excellent', 'good', 'fair', 'salvage', 'parts only'])
|
509 |
-
fuel = st.selectbox("Fuel Type", sorted(original_data['Fuel'].fillna('Unknown').unique())) # Match casing for 'Fuel'
|
510 |
-
odometer = st.number_input("Odometer (miles)", min_value=0, value=20000, format="%d", step=1000)
|
511 |
-
title_status = st.selectbox("Title Status", sorted(original_data['Title_status'].fillna('Unknown').unique())) # Match casing
|
512 |
-
transmission = st.selectbox("Transmission", sorted(original_data['Transmission'].fillna('Unknown').unique()))
|
513 |
-
drive = st.selectbox("Drive Type", sorted(original_data['Drive'].fillna('Unknown').unique()))
|
514 |
-
size = st.selectbox("Size", sorted(original_data['Size'].fillna('Unknown').unique()))
|
515 |
-
paint_color = st.selectbox("Paint Color", sorted(original_data['Paint_color'].fillna('Unknown').unique()))
|
516 |
-
|
517 |
-
car_type = 'sedan' # Default type
|
518 |
-
|
519 |
-
# Prediction button
|
520 |
-
predict_button = st.button("📊 Predict Price", use_container_width=True)
|
521 |
-
|
522 |
-
return {
|
523 |
-
'year': year,
|
524 |
-
'make': make.strip(), # Use correctly cased `make`
|
525 |
-
'model': model_name if model_name != "No models available" else 'unknown',
|
526 |
-
'condition': condition.lower().strip(),
|
527 |
-
'fuel': fuel.lower().strip(),
|
528 |
-
'odometer': odometer,
|
529 |
-
'title_status': title_status.lower().strip(),
|
530 |
-
'transmission': transmission.lower().strip(),
|
531 |
-
'drive': drive.lower().strip(),
|
532 |
-
'size': size.lower().strip(),
|
533 |
-
'type': car_type.lower().strip(),
|
534 |
-
'paint_color': paint_color.lower().strip()
|
535 |
-
}, predict_button
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
def create_market_trends_plot_with_model(model, make, base_inputs, label_encoders, years_range=range(1980, 2025)):
|
540 |
-
predictions = []
|
541 |
-
|
542 |
-
for year in years_range:
|
543 |
-
try:
|
544 |
-
current_inputs = base_inputs.copy()
|
545 |
-
current_inputs['year'] = float(year)
|
546 |
-
age = 2024 - year
|
547 |
-
|
548 |
-
# Base value calculation
|
549 |
-
base_price = 30000 # Average new car price
|
550 |
-
|
551 |
-
# Depreciation curve
|
552 |
-
if age <= 1:
|
553 |
-
value_factor = 0.85 # 15% first year depreciation
|
554 |
-
elif age <= 5:
|
555 |
-
value_factor = 0.85 * (0.90 ** (age - 1)) # 10% years 2-5
|
556 |
-
else:
|
557 |
-
value_factor = 0.85 * (0.90 ** 4) * (0.95 ** (age - 5)) # 5% thereafter
|
558 |
-
|
559 |
-
price = base_price * value_factor
|
560 |
-
predictions.append({"year": year, "predicted_price": max(price, 2000)}) # Floor of $2000
|
561 |
-
|
562 |
-
except Exception as e:
|
563 |
-
continue
|
564 |
-
|
565 |
-
if not predictions:
|
566 |
-
return None
|
567 |
-
|
568 |
-
predictions_df = pd.DataFrame(predictions)
|
569 |
-
fig, ax = plt.subplots(figsize=(12, 6))
|
570 |
-
ax.plot(predictions_df["year"], predictions_df["predicted_price"], color="#FF4B4B", linewidth=2)
|
571 |
-
ax.set_title(f"Average Car Value by Age")
|
572 |
-
ax.set_xlabel("Year")
|
573 |
-
ax.set_ylabel("Value ($)")
|
574 |
-
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'${x:,.0f}'))
|
575 |
-
plt.grid(True, alpha=0.3)
|
576 |
-
|
577 |
-
return fig
|
578 |
-
|
579 |
-
def inspect_model_features(model):
|
580 |
-
# Check feature names the model expects
|
581 |
-
try:
|
582 |
-
if hasattr(model, "feature_names_in_"):
|
583 |
-
print("Model feature names:", model.feature_names_in_)
|
584 |
-
else:
|
585 |
-
print("Model does not have 'feature_names_in_' attribute.")
|
586 |
-
except Exception as e:
|
587 |
-
print(f"Error inspecting model features: {e}")
|
588 |
-
|
589 |
-
def predict_with_ranges(inputs, model, label_encoders):
|
590 |
-
input_df = prepare_input(inputs, label_encoders)
|
591 |
-
base_prediction = float(np.expm1(model.predict(input_df)[0]))
|
592 |
-
|
593 |
-
brand_categories = create_brand_categories()
|
594 |
-
make = inputs['make'].lower()
|
595 |
-
year = inputs['year']
|
596 |
-
condition = inputs['condition']
|
597 |
-
odometer = inputs['odometer']
|
598 |
-
age = 2024 - year
|
599 |
-
|
600 |
-
# Find brand category and price range
|
601 |
-
price_range = None
|
602 |
-
for category, brands in brand_categories.items():
|
603 |
-
if make in brands:
|
604 |
-
price_range = brands[make]
|
605 |
-
break
|
606 |
-
if not price_range:
|
607 |
-
price_range = (15000, 35000) # Default range
|
608 |
-
|
609 |
-
# Calculate adjustment factors
|
610 |
-
mileage_factor = max(1 - (odometer / 200000) * 0.3, 0.7)
|
611 |
-
age_factor = 0.85 ** min(age, 15)
|
612 |
-
condition_factor = {
|
613 |
-
'new': 1.0,
|
614 |
-
'like new': 0.9,
|
615 |
-
'excellent': 0.8,
|
616 |
-
'good': 0.7,
|
617 |
-
'fair': 0.5,
|
618 |
-
'salvage': 0.3
|
619 |
-
}.get(condition, 0.7)
|
620 |
-
|
621 |
-
# Apply all factors
|
622 |
-
min_price = price_range[0] * mileage_factor * age_factor * condition_factor
|
623 |
-
max_price = price_range[1] * mileage_factor * age_factor * condition_factor
|
624 |
-
predicted_price = base_prediction * mileage_factor * age_factor * condition_factor
|
625 |
-
|
626 |
-
# Use uniform distribution instead of clamping
|
627 |
-
final_prediction = np.random.uniform(min_price, max_price)
|
628 |
-
|
629 |
-
return {
|
630 |
-
'predicted_price': final_prediction,
|
631 |
-
'min_price': min_price,
|
632 |
-
'max_price': max_price
|
633 |
-
}
|
634 |
-
# --- Main Application ---
|
635 |
-
def main(model, label_encoders, dataset):
|
636 |
-
col1, col2 = st.columns([2, 1])
|
637 |
-
|
638 |
-
with col1:
|
639 |
-
st.markdown("""
|
640 |
-
<h1 style='text-align: center;'>The Guide 🚗</h1>
|
641 |
-
<p style='text-align: center; color: #666; font-size: 1.1rem; margin-bottom: 2rem;'>
|
642 |
-
A cutting-edge data science project leveraging machine learning to detect which car would be best for you.
|
643 |
-
</p>
|
644 |
-
""", unsafe_allow_html=True)
|
645 |
-
|
646 |
-
inputs, predict_button = create_prediction_interface()
|
647 |
-
|
648 |
-
# Prepare base inputs
|
649 |
-
base_inputs = {
|
650 |
-
"year": inputs.get("year", 2022),
|
651 |
-
"make": inputs.get("make", "toyota").lower(),
|
652 |
-
"model": inputs.get("model", "camry"),
|
653 |
-
"odometer": inputs.get("odometer", 20000),
|
654 |
-
"condition": inputs.get("condition", "good"),
|
655 |
-
"fuel": inputs.get("fuel", "gas"),
|
656 |
-
"title_status": inputs.get("title_status", "clean"),
|
657 |
-
"transmission": inputs.get("transmission", "automatic"),
|
658 |
-
"drive": inputs.get("drive", "fwd"),
|
659 |
-
"size": inputs.get("size", "mid-size"),
|
660 |
-
"paint_color": inputs.get("paint_color", "black"),
|
661 |
-
"type": inputs.get("type", "sedan")
|
662 |
-
}
|
663 |
-
|
664 |
-
if base_inputs["condition"] == "new":
|
665 |
-
base_inputs["odometer"] = 0
|
666 |
-
|
667 |
-
if predict_button:
|
668 |
-
st.write(f"Analyzing {base_inputs['year']} {base_inputs['make'].title()} {base_inputs['model'].title()}...")
|
669 |
-
prediction_results = predict_with_ranges(base_inputs, model, label_encoders)
|
670 |
-
|
671 |
-
st.markdown(f"""
|
672 |
-
### Price Analysis
|
673 |
-
- **Estimated Range**: ${prediction_results['min_price']:,.2f} - ${prediction_results['max_price']:,.2f}
|
674 |
-
- **Model Prediction**: ${prediction_results['predicted_price']:,.2f}
|
675 |
|
676 |
-
|
677 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
678 |
|
679 |
-
# Generate and display the graph
|
680 |
-
fig = create_market_trends_plot_with_model(model, base_inputs["make"], base_inputs, label_encoders)
|
681 |
-
if fig:
|
682 |
-
st.pyplot(fig)
|
683 |
else:
|
684 |
-
st.
|
685 |
-
|
686 |
-
|
687 |
-
create_assistant_section(dataset)
|
688 |
-
|
689 |
-
if __name__ == "__main__":
|
690 |
-
try:
|
691 |
-
# Load data and model
|
692 |
-
original_data = load_datasets()
|
693 |
-
model, label_encoders = load_model_and_encodings()
|
694 |
-
|
695 |
-
# Inspect model features
|
696 |
-
inspect_model_features(model)
|
697 |
-
|
698 |
-
# Call the main function
|
699 |
-
main(model, label_encoders, original_data)
|
700 |
-
except Exception as e:
|
701 |
-
st.error(f"Error loading data or models: {str(e)}")
|
702 |
-
st.stop()
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import openai
|
4 |
import joblib
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
import matplotlib.pyplot as plt
|
9 |
+
import numpy as np
|
|
|
10 |
from sklearn.preprocessing import LabelEncoder
|
|
|
|
|
|
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
13 |
+
# Function definitions
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
def load_image(image_file):
|
16 |
+
return Image.open(image_file)
|
17 |
|
18 |
+
def classify_image(image):
|
19 |
+
img_byte_arr = BytesIO()
|
20 |
+
image.save(img_byte_arr, format='PNG')
|
21 |
+
img_byte_arr = img_byte_arr.getvalue()
|
22 |
+
|
23 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACE_API_KEY}"}
|
24 |
+
response = requests.post(
|
25 |
+
'https://api-inference.huggingface.co/models/dima806/car_models_image_detection',
|
26 |
+
headers=headers,
|
27 |
+
files={"file": img_byte_arr}
|
28 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
if response.status_code == 200:
|
31 |
+
return response.json()
|
32 |
+
else:
|
33 |
+
st.error("Image classification failed. Please try again.")
|
34 |
+
return None
|
|
|
35 |
|
36 |
+
def find_closest_match(df, brand, model):
|
37 |
+
match = df[(df['make'].str.contains(brand, case=False)) & (df['model'].str.contains(model, case=False))]
|
38 |
+
if not match.empty:
|
39 |
+
return match.iloc[0]
|
40 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
def get_car_overview(car_data):
|
43 |
+
prompt = f"Provide an overview of the following car:\nYear: {car_data['year']}\nMake: {car_data['make']}\nModel: {car_data['model']}\nTrim: {car_data['trim']}\nPrice: ${car_data['price']}\nCondition: {car_data['condition']}\n"
|
44 |
+
response = openai.ChatCompletion.create(
|
45 |
+
model="gpt-3.5-turbo",
|
46 |
+
messages=[{"role": "user", "content": prompt}]
|
47 |
+
)
|
48 |
+
return response.choices[0].message['content']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
50 |
def load_model_and_encodings():
|
51 |
try:
|
|
|
52 |
with st.spinner('Loading model...'):
|
53 |
model_content = hf_hub_download(repo_id="EdBoy2202/car_prediction_model", filename="car_price_modelv3.pkl")
|
54 |
model = joblib.load(model_content)
|
55 |
+
|
56 |
+
original_data = load_datasets() # Ensure this function loads your CSV data
|
57 |
|
|
|
|
|
|
|
|
|
58 |
label_encoders = {}
|
59 |
categorical_features = ['Make', 'model', 'condition', 'fuel', 'title_status',
|
60 |
+
'transmission', 'drive', 'size', 'type', 'paint_color']
|
61 |
|
62 |
for feature in categorical_features:
|
63 |
if feature in original_data.columns:
|
|
|
71 |
st.error(f"Error loading model: {str(e)}")
|
72 |
raise e
|
73 |
|
74 |
+
def predict_price(model, encoders, user_input):
|
75 |
+
# Transform user input into model input format
|
76 |
+
encoded_features = {feature: encoders[feature].transform([value])[0] if value in encoders[feature] else 0
|
77 |
+
for feature, value in user_input.items()}
|
78 |
+
|
79 |
+
# Create a DataFrame for prediction
|
80 |
+
input_data = pd.DataFrame([encoded_features])
|
81 |
+
|
82 |
+
# Predict price
|
83 |
+
predicted_price = model.predict(input_data)
|
84 |
+
return predicted_price[0]
|
85 |
+
|
86 |
+
# Streamlit App
|
87 |
+
|
88 |
+
st.title("Auto Appraise")
|
89 |
+
st.write("Capture a car image using your camera or upload an image to get its brand, model, overview, and expected price!")
|
90 |
+
|
91 |
+
# Load the CSV file
|
92 |
+
df = pd.read_csv('car_data.csv')
|
93 |
+
|
94 |
+
# Load model and encoders
|
95 |
+
model, label_encoders = load_model_and_encodings()
|
96 |
+
|
97 |
+
# Initialize OpenAI API key
|
98 |
+
openai.api_key = st.secrets["GPT_TOKEN"] # Your OpenAI API key
|
99 |
+
HUGGINGFACE_API_KEY = st.secrets["HF_TOKEN"] # Your Hugging Face API key
|
100 |
+
|
101 |
+
# Camera input for taking photo
|
102 |
+
camera_image = st.camera_input("Take a picture of the car!")
|
103 |
+
|
104 |
+
if camera_image is not None:
|
105 |
+
image = load_image(camera_image)
|
106 |
+
st.image(image, caption='Captured Image.', use_column_width=True)
|
107 |
+
|
108 |
+
# Classify the car image
|
109 |
+
car_info = classify_image(image)
|
110 |
+
if car_info:
|
111 |
+
brand = car_info['brand'] # Adjust according to response structure
|
112 |
+
model_name = car_info['model']
|
113 |
+
st.write(f"Identified Car: {brand} {model_name}")
|
114 |
+
|
115 |
+
# Find the closest match in the CSV
|
116 |
+
match = find_closest_match(df, brand, model_name)
|
117 |
+
if match is not None:
|
118 |
+
st.write("Closest Match Found:")
|
119 |
+
st.write(match)
|
120 |
+
|
121 |
+
# Get additional information using GPT-3.5-turbo
|
122 |
+
overview = get_car_overview(match)
|
123 |
+
st.write("Car Overview:")
|
124 |
+
st.write(overview)
|
125 |
+
|
126 |
+
# Interactive Price Prediction
|
127 |
+
st.subheader("Price Prediction Over Time")
|
128 |
+
selected_years = st.slider("Select range of years for price prediction",
|
129 |
+
min_value=2000, max_value=2023, value=(2010, 2023))
|
130 |
+
|
131 |
+
years = np.arange(selected_years[0], selected_years[1] + 1)
|
132 |
+
predicted_prices = []
|
133 |
+
|
134 |
+
for year in years:
|
135 |
+
user_input = {
|
136 |
+
'Make': brand,
|
137 |
+
'model': model_name,
|
138 |
+
'condition': match['condition'],
|
139 |
+
'fuel': match['fuel'],
|
140 |
+
'title_status': match['title_status'],
|
141 |
+
'transmission': match['transmission'],
|
142 |
+
'drive': match['drive'],
|
143 |
+
'size': match['size'],
|
144 |
+
'type': match['type'],
|
145 |
+
'paint_color': match['paint_color'],
|
146 |
+
'year': year
|
147 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
price = predict_price(model, label_encoders, user_input)
|
150 |
+
predicted_prices.append(price)
|
151 |
+
|
152 |
+
# Plotting the results
|
153 |
+
plt.figure(figsize=(10, 5))
|
154 |
+
plt.plot(years, predicted_prices, marker='o')
|
155 |
+
plt.title(f"Predicted Price of {brand} {model_name} Over Time")
|
156 |
+
plt.xlabel("Year")
|
157 |
+
plt.ylabel("Predicted Price ($)")
|
158 |
+
plt.grid()
|
159 |
+
st.pyplot(plt)
|
160 |
|
|
|
|
|
|
|
|
|
161 |
else:
|
162 |
+
st.write("No match found in the database.")
|
163 |
+
else:
|
164 |
+
st.write("Please take a picture of the car to proceed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|