Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,8 @@ import pandas as pd
|
|
3 |
import openai
|
4 |
import joblib
|
5 |
from PIL import Image
|
6 |
-
import requests
|
7 |
-
from io import BytesIO
|
8 |
import matplotlib.pyplot as plt
|
9 |
import numpy as np
|
10 |
-
from sklearn.preprocessing import LabelEncoder
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
13 |
import torch
|
@@ -24,9 +21,6 @@ def load_datasets():
|
|
24 |
st.error(f"Error loading dataset: {str(e)}")
|
25 |
raise e
|
26 |
|
27 |
-
def load_image(image_file):
|
28 |
-
return Image.open(image_file)
|
29 |
-
|
30 |
def classify_image(image):
|
31 |
try:
|
32 |
# Load the model and feature extractor
|
@@ -114,6 +108,10 @@ model = load_model_and_encodings()
|
|
114 |
# Initialize OpenAI API key
|
115 |
openai.api_key = st.secrets["GPT_TOKEN"]
|
116 |
|
|
|
|
|
|
|
|
|
117 |
# File uploader for image
|
118 |
uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png"])
|
119 |
|
@@ -121,40 +119,35 @@ uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png
|
|
121 |
camera_image = st.camera_input("Or take a picture of the car")
|
122 |
|
123 |
# Process the image (either uploaded or from camera)
|
124 |
-
image = None
|
125 |
-
st.write(f"uploaded_file: {uploaded_file}")
|
126 |
-
st.write(f"camera_image: {camera_image}")
|
127 |
-
|
128 |
if uploaded_file is not None:
|
129 |
st.write("Attempting to open uploaded file...")
|
130 |
try:
|
131 |
-
image = Image.open(uploaded_file)
|
132 |
st.write("Image uploaded successfully.")
|
133 |
except Exception as e:
|
134 |
st.error(f"Error opening uploaded file: {str(e)}")
|
135 |
elif camera_image is not None:
|
136 |
st.write("Attempting to open camera image...")
|
137 |
try:
|
138 |
-
image = Image.open(camera_image)
|
139 |
st.write("Image captured successfully.")
|
140 |
except Exception as e:
|
141 |
st.error(f"Error opening camera image: {str(e)}")
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
st.image(image, caption='Processed Image', use_container_width=True)
|
147 |
|
148 |
# Classify the car image
|
149 |
with st.spinner('Analyzing image...'):
|
150 |
-
car_classifications = classify_image(image)
|
151 |
|
152 |
if car_classifications:
|
153 |
st.write("Image classification successful.")
|
154 |
st.subheader("Car Classification Results:")
|
155 |
for classification in car_classifications:
|
156 |
st.write(f"Model: {classification['label']}")
|
157 |
-
st.write(f"Confidence: {classification['score']*100:.2f}%")
|
158 |
|
159 |
# Use the top prediction for further processing
|
160 |
top_prediction = car_classifications[0]['label']
|
|
|
3 |
import openai
|
4 |
import joblib
|
5 |
from PIL import Image
|
|
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import numpy as np
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
10 |
import torch
|
|
|
21 |
st.error(f"Error loading dataset: {str(e)}")
|
22 |
raise e
|
23 |
|
|
|
|
|
|
|
24 |
def classify_image(image):
|
25 |
try:
|
26 |
# Load the model and feature extractor
|
|
|
108 |
# Initialize OpenAI API key
|
109 |
openai.api_key = st.secrets["GPT_TOKEN"]
|
110 |
|
111 |
+
# Get the session state
|
112 |
+
if 'image' not in st.session_state:
|
113 |
+
st.session_state.image = None
|
114 |
+
|
115 |
# File uploader for image
|
116 |
uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png"])
|
117 |
|
|
|
119 |
camera_image = st.camera_input("Or take a picture of the car")
|
120 |
|
121 |
# Process the image (either uploaded or from camera)
|
|
|
|
|
|
|
|
|
122 |
if uploaded_file is not None:
|
123 |
st.write("Attempting to open uploaded file...")
|
124 |
try:
|
125 |
+
st.session_state.image = Image.open(uploaded_file)
|
126 |
st.write("Image uploaded successfully.")
|
127 |
except Exception as e:
|
128 |
st.error(f"Error opening uploaded file: {str(e)}")
|
129 |
elif camera_image is not None:
|
130 |
st.write("Attempting to open camera image...")
|
131 |
try:
|
132 |
+
st.session_state.image = Image.open(camera_image)
|
133 |
st.write("Image captured successfully.")
|
134 |
except Exception as e:
|
135 |
st.error(f"Error opening camera image: {str(e)}")
|
136 |
|
137 |
+
# Display the processed image
|
138 |
+
if st.session_state.image is not None:
|
139 |
+
st.image(st.session_state.image, caption='Processed Image', use_container_width=True)
|
|
|
140 |
|
141 |
# Classify the car image
|
142 |
with st.spinner('Analyzing image...'):
|
143 |
+
car_classifications = classify_image(st.session_state.image)
|
144 |
|
145 |
if car_classifications:
|
146 |
st.write("Image classification successful.")
|
147 |
st.subheader("Car Classification Results:")
|
148 |
for classification in car_classifications:
|
149 |
st.write(f"Model: {classification['label']}")
|
150 |
+
st.write(f"Confidence: {classification['score'] * 100:.2f}%")
|
151 |
|
152 |
# Use the top prediction for further processing
|
153 |
top_prediction = car_classifications[0]['label']
|