Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -70,6 +70,9 @@ def preprocess_car_data(df):
|
|
70 |
df[col] = le.fit_transform(df[col])
|
71 |
label_encoders[col] = le
|
72 |
|
|
|
|
|
|
|
73 |
return df, label_encoders
|
74 |
|
75 |
# Calculate similarity between the classified car and entries in the CSV
|
@@ -85,6 +88,9 @@ def find_closest_car(df, label_encoders, make, model, year):
|
|
85 |
feature_columns = ['make', 'model', 'year']
|
86 |
df_feature_vectors = df[feature_columns].values
|
87 |
|
|
|
|
|
|
|
88 |
# Compute cosine similarity between the classified car and all entries in the CSV
|
89 |
similarity_scores = cosine_similarity(classified_car_vector, df_feature_vectors)
|
90 |
|
|
|
70 |
df[col] = le.fit_transform(df[col])
|
71 |
label_encoders[col] = le
|
72 |
|
73 |
+
# Handle NaN values by filling them with a placeholder (e.g., -1 for categorical columns)
|
74 |
+
df.fillna(-1, inplace=True)
|
75 |
+
|
76 |
return df, label_encoders
|
77 |
|
78 |
# Calculate similarity between the classified car and entries in the CSV
|
|
|
88 |
feature_columns = ['make', 'model', 'year']
|
89 |
df_feature_vectors = df[feature_columns].values
|
90 |
|
91 |
+
# Handle NaN values before calculating similarity
|
92 |
+
df_feature_vectors = np.nan_to_num(df_feature_vectors) # Converts NaN to 0
|
93 |
+
|
94 |
# Compute cosine similarity between the classified car and all entries in the CSV
|
95 |
similarity_scores = cosine_similarity(classified_car_vector, df_feature_vectors)
|
96 |
|