Echo9Zulu's picture
Update app.py
7a4e720 verified
import gradio as gr
INTRODUCTION="""
### # Optimum CLI Export Tool.. tool
This tool helps organize conversion commands when using Intel Optimum for Transformers and respects the order of positional arguments. Otherwise these commands can get quite nuanced to keep track of.
My goal was to make it easier to construct commands for the [Optimum CLI conversion tool](https://huggingface.co/docs/optimum/main/en/intel/openvino/export) which enables converting models to the OpenVINO Intermediate Representation
outside of the from.pretrained method used in Transformers with OpenVINO related classes like OVModelForCausalLM, OVModelForSeq2SeqLM, OVModelForQuestionAnswering, etc, which interface with the OpenVINO runtime.
## Usage
Here I'm assuming you have followed the instructions in the documentation and have all your dependencies in order.
Run to to get the latest version of the neccessary extension for optimum:
```
pip install --upgrade --upgrade-strategy eager optimum[openvino]
```
Intended workflow:
-Select conversion parameters.
-Hit "Submit"
-Copy command.
-Execute in your environment.
Note: Converstion can take a while and will be resource intensive.
OpenVINO supports Intel CPUs from 6th gen forward, so you can squeeze performance out of older hardware with
different accuracy/performance tradeoffs than the popular quants of GGUFs.
## Discussion
Leveraging CPU, GPU and NPU hardware acceleration from OpenVINO requires converting a model into an Intermediate format derived from ONNX.
The command we execute rebuilds the model graph from it's source to be optimized for how OpenVINO uses this graph in memory.
Using OpenVINO effectively requires considering facts about your Intel hardware. Visit the [Intel Ark]([Intel® Processors for PC, Laptops, Servers, and AI | Intel®](https://www.intel.com/content/www/us/en/products/details/processors.html)) product database to find this information.
Here are some hardware questions you should be able to answer before using this tool;
- What data types does my CPU support?
- What instruction sets?
- How will I be using the model?
- Do I have enough system memory for this task?
It's *the* ground truth for Intel Hardware specs. Even so, when testing with different model architectures
"""
class ConversionTool:
def __init__(self):
self.model_input = gr.Textbox(
label='Model',
placeholder='Model ID on huggingface.co or path on disk',
info="The model to convert. This can be a model ID on Hugging Face or a path on disk."
)
self.output_path = gr.Textbox(
label='Output Directory',
placeholder='Path to store the generated OV model',
info="We are storing some text here"
)
self.task = gr.Dropdown(
label='Task',
choices=['auto'] + [
'image-to-image',
'image-segmentation',
'inpainting',
'sentence-similarity',
'text-to-audio',
'image-to-text',
'automatic-speech-recognition',
'token-classification',
'text-to-image',
'audio-classification',
'feature-extraction',
'semantic-segmentation',
'masked-im',
'audio-xvector',
'audio-frame-classification',
'text2text-generation',
'multiple-choice',
'depth-estimation',
'image-classification',
'fill-mask', 'zero-shot-object-detection', 'object-detection',
'question-answering', 'zero-shot-image-classification',
'mask-generation', 'text-generation', 'text-classification',
'text-generation-with-past'
],
value=None
)
self.framework = gr.Dropdown(
label='Framework',
choices=['pt', 'tf'],
value=None
)
self.weight_format = gr.Dropdown(
label='Weight Format',
choices=['fp32', 'fp16', 'int8', 'int4', 'mxfp4', 'nf4'],
value=None,
info="The level of compression we apply to the intermediate representation."
)
self.library = gr.Dropdown(
label='Library',
choices=[
'auto',
'transformers',
'diffusers',
'timm',
'sentence_transformers',
'open_clip'
],
value=None
)
self.ratio = gr.Number(
label='Ratio',
value=None,
minimum=0.0,
maximum=1.0,
step=0.1
)
self.group_size = gr.Number(
label='Group Size',
value=None,
step=1
)
self.backup_precision = gr.Dropdown(
label='Backup Precision',
choices=['', 'int8_sym', 'int8_asym'],
# value=None
)
self.dataset = gr.Dropdown(
label='Dataset',
choices=['none',
'auto',
'wikitext2',
'c4',
'c4-new',
'contextual',
'conceptual_captions',
'laion/220k-GPT4Vision-captions-from-LIVIS',
'laion/filtered-wit'],
value=None
)
self.trust_remote_code = gr.Checkbox(
label='Trust Remote Code',
value=False)
self.disable_stateful = gr.Checkbox(
label='Disable Stateful',
value=False,
info="Disables stateful inference. This is required for multi GPU inference due to how OpenVINO uses the KV cache. ")
self.disable_convert_tokenizer = gr.Checkbox(
label='Disable Convert Tokenizer',
value=False,
info="Disables the tokenizer conversion. Use when models have custom tokenizers which might have formatting Optimum does not expect."
)
self.all_layers = gr.Checkbox(
label='All Layers',
value=False)
self.awq = gr.Checkbox(
label='AWQ',
value=False,
info="Activation aware quantization algorithm from NNCF. Requires a dataset, which can also be a path. ")
self.scale_estimation = gr.Checkbox(
label='Scale Estimation',
value=False)
self.gptq = gr.Checkbox(
label='GPTQ',
value=False)
self.lora_correction = gr.Checkbox(
label='LoRA Correction',
value=False)
self.sym = gr.Checkbox(
label='Symmetric Quantization',
value=False,
info="Symmetric quantization is faster and uses less memory. It is recommended for most use cases."
)
self.quant_mode = gr.Dropdown(
label='Quantization Mode',
choices=['sym', 'asym'],
value=None
)
self.cache_dir = gr.Textbox(
label='Cache Directory',
placeholder='Path to cache directory'
)
self.pad_token_id = gr.Number(
label='Pad Token ID',
value=None,
step=1,
info="Will try to infer from tokenizer if not provided."
)
self.sensitivity_metric = gr.Dropdown(
label='Sensitivity Metric',
choices=['weight_quantization_error', 'hessian_input_activation',
'mean_activation_variance', 'max_activation_variance', 'mean_activation_magnitude'],
value=None
)
self.num_samples = gr.Number(
label='Number of Samples',
value=None,
step=1
)
self.smooth_quant_alpha = gr.Number(
label='Smooth Quant Alpha',
value=None,
minimum=0.0,
maximum=1.0,
step=0.1
)
self.command_output = gr.TextArea(
label='Generated Command',
placeholder='Generated command will appear here...',
show_label=True,
show_copy_button=True,
lines=5 # Adjust height
)
def construct_command(self, model_input, output_path, task, framework, weight_format, library,
ratio, group_size, backup_precision, dataset,
trust_remote_code, disable_stateful, disable_convert_tokenizer,
all_layers, awq, scale_estimation, gptq, lora_correction, sym,
quant_mode, cache_dir, pad_token_id, sensitivity_metric, num_samples,
smooth_quant_alpha):
"""Construct the command string"""
if not model_input or not output_path:
return ''
cmd_parts = ['optimum-cli export openvino']
cmd_parts.append(f'-m "{model_input}"')
if task and task != 'auto':
cmd_parts.append(f'--task {task}')
if framework:
cmd_parts.append(f'--framework {framework}')
if weight_format and weight_format != 'fp32':
cmd_parts.append(f'--weight-format {weight_format}')
if library and library != 'auto':
cmd_parts.append(f'--library {library}')
if ratio is not None and ratio != 0:
cmd_parts.append(f'--ratio {ratio}')
if group_size is not None and group_size != 0:
cmd_parts.append(f'--group-size {group_size}')
if backup_precision:
cmd_parts.append(f'--backup-precision {backup_precision}')
if dataset and dataset != 'none':
cmd_parts.append(f'--dataset {dataset}')
# Boolean flags - only add if True
if trust_remote_code:
cmd_parts.append('--trust-remote-code')
if disable_stateful:
cmd_parts.append('--disable-stateful')
if disable_convert_tokenizer:
cmd_parts.append('--disable-convert-tokenizer')
if all_layers:
cmd_parts.append('--all-layers')
if awq:
cmd_parts.append('--awq')
if scale_estimation:
cmd_parts.append('--scale-estimation')
if gptq:
cmd_parts.append('--gptq')
if lora_correction:
cmd_parts.append('--lora-correction')
if sym:
cmd_parts.append('--sym')
# Additional optional arguments - only add if they have values
if quant_mode:
cmd_parts.append(f'--quant-mode {quant_mode}')
if cache_dir:
cmd_parts.append(f'--cache_dir "{cache_dir}"')
if pad_token_id is not None and pad_token_id != 0:
cmd_parts.append(f'--pad-token-id {pad_token_id}')
if sensitivity_metric:
cmd_parts.append(f'--sensitivity-metric {sensitivity_metric}')
if num_samples is not None and num_samples != 0:
cmd_parts.append(f'--num-samples {num_samples}')
if smooth_quant_alpha is not None and smooth_quant_alpha != 0:
cmd_parts.append(f'--smooth-quant-alpha {smooth_quant_alpha}')
cmd_parts.append(f'"{output_path}"')
constructed_command = ' '.join(cmd_parts)
return constructed_command
def gradio_app(self):
"""Create and run the Gradio interface."""
inputs = [
self.model_input,
self.output_path,
self.task,
self.framework,
self.weight_format,
self.library,
self.ratio,
self.group_size,
self.backup_precision,
self.dataset,
self.trust_remote_code,
self.disable_stateful,
self.disable_convert_tokenizer,
self.all_layers,
self.awq,
self.scale_estimation,
self.gptq,
self.lora_correction,
self.sym,
self.quant_mode,
self.cache_dir,
self.pad_token_id,
self.sensitivity_metric,
self.num_samples,
self.smooth_quant_alpha,
]
interface = gr.Interface(
fn=self.construct_command,
inputs=inputs,
outputs=self.command_output,
title="OpenVINO Conversion Tool",
description="Enter model information to generate an `optimum-cli` export command.",
# article=INTRODUCTION,
allow_flagging='auto'
)
return interface
if __name__ == "__main__":
tool = ConversionTool()
app = tool.gradio_app()
app.launch(share = False)